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Highly directive current distributions: General theory
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A theoretical scheme for studying the properties of localized, monochromatic, and highly directive classical
current distributions in two and three dimensions is formulated and analyzed. For continuous current distribu-
tions, it is shown that maximizing the directivityD in the far field while constrainingC5N/T, whereN is the
integral of the square of the magnitude of the current density andT is proportional to the total radiated power,
leads to a Fredholm integral equation of the second kind for the optimum current. This equation is a useful
analytical tool for studying currents that produce optimum directivities above the directivity of a uniform
distribution. Various consequences of the present formulation are examined analytically for essentially arbi-
trary geometries of the current-carrying region. In particular, certain properties of the optimum directivity are
derived and differences between the continuous and discrete cases are pointed out. WhenC→`, the directivity
tends to infinity monotonically, in accord with Oseen’s ‘‘Einstein needle radiation.’’
@S1063-651X~98!02108-4#

PACS number~s!: 41.20.Bt, 03.40.Kf
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I. INTRODUCTION

An old question in classical electromagnetism was: Fo
current-carrying region of given shape and size and fo
given operating frequency, what is the maximum directiv
obtainable? This question was addressed as early as 192
Oseen@1#. Starting with Maxwell’s equations, he essentia
showed that an arbitrarily small current-carrying region c
give rise to an arbitrarily narrow radiation pattern. Ose
termed this theoretical possibility ‘‘Einstein needle rad
tion,’’ referring to a 1909 paper by Einstein on the quantu
nature of radiation@2#. Some later authors were apparen
not aware of Oseen’s fundamental, yet counterintuitive,
sult. According to Bloch, Medhurst, and Pool@3#, it was
forgotten and rediscovered twice after 1922. In 1943,
example, La Paz and Miller@4# claimed to have found a
current distribution in a linear radiator that would give ma
mum directivity. Three years later, Bouwkamp and de Bru
@5# demonstrated that La Paz and Miller had made an er
If one can choose the linear current distribution at will, the
is no finite limit to the directivity of the radiator.

Also during the 1940s, several authors noticed that
must pay dearly for very large directivities. A specific seco
question is: When the directivity is very large, what is t
price one pays? Perhaps the first author to address this q
tion in a systematic manner was Chu@6#. Briefly, Chu intro-
duced a quality factorQ, which he computed from the field
distribution on a spherical surface enclosing an unspeci
radiating system. By analogy with circuit theory, Chu relat
his Q to bandwidth but noted that ‘‘It is understood that t
physical interpretation ofQ as so computed becomes rath
vague whenever the value ofQ is low.’’ Through a study of
his Q, Chu concluded that very large directivities lead
extremely small bandwidths and extremely low efficienci
so that very large directivities, though possible in theory,
impractical.

Chu’s ideas have been discussed, extended, and ree
ined by many authors@7–9#. From the more recent works
PRE 581063-651X/98/58~2!/2531~17!/$15.00
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one sees that a surrounding spherical surface remains a
mon device for addressing questions of the above type. F
thermore, variably definedQ’s, frequently different from
Chu’s, still seem to be the most popular constraining qu
tities. Other authors, however, have severely criticized
relation between suchQ’s and bandwidth@10,11#. Investiga-
tions with commonly usedQ’s have pointed out anomalie
or proposed remedies to such anomalies@10–13#. In Ref.
@11#, Rhodes calledQ ‘‘one of the most misused and misun
derstood concepts in electrical engineering.’’

It has been stressed~see, for example, Refs.@3,14,15#!
that there is no precise threshold for the directivity that c
be obtained in practice and that higher-than-conventional
rectivities can be obtained without running into severe di
culties. Indeed, recent investigations have focused
schemes for obtaining large directivities. These include
use of high-temperature superconductors@16# in conven-
tional types of antennas or their feeding structures, as we
schemes@15,17,18# that utilize the resonant properties of u
conventional types of antennas.

The discussions above lead to a third, even more com
cated question: How large a directivity can one obtainwith-
out paying dearly? Due to the unclear relation betweenQ
~defined in any of the usual ways! and the bandwidth when
the value of the former is low, it is preferable to address t
question by methods other than those originating from C
In reality, this rather vague question cannot have a sim
answer, even from a strictly theoretical point of view. T
primary reason is that current distributions cannot be cho
at will.

A fourth, more tractable question is: If one is free
choose the current distribution in a bounded region of giv
shape and size, how large a directivity can one obtain w
out paying dearly? Investigation of this question, a task t
does not seem to have been addressed adequately, is a
step toward answering the preceding one and naturally c
for the formulation of a constrained maximization problem
2531 © 1998 The American Physical Society
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2532 PRE 58MARGETIS, FIKIORIS, MYERS, AND WU
The purpose of the present paper is to discuss a theore
framework for examining the fourth question posed abo
and to study analytically the general consequences of
model. In the case of continuous current distributions,
constraining quantityC is defined to beN/T, whereN is the
integral of the square of the magnitude of the current den
andT is proportional to the total radiated power. It is not
worthy that, for a three-dimensional line source, this ra
becomes identical to Taylor’s ‘‘supergain ratio’’@19# when
point sources of current are assumed to be isotropic radia
The constraintC has been used in various contexts by oth
@20–29#, but their approaches or objectives differ from t
present ones. The advantages of the employed constrain
readily recognized: It is a well-defined quantity, being d
rectly obtainable from the currents instead of the fields
the surface of a surrounding sphere, and it is specific to
particular radiating system. Furthermore, it leads to a w
posed optimization problem. For most cases of practical
terest, C measures the efficiency of the radiating system a
is therefore a natural constraint for the physical problem
der investigation.

This paper is organized as follows. Section II procee
from Maxwell’s equations to state the optimization proble
for both continuous and discrete current distributions. In S
III it is shown that the optimum continuous current can
conveniently identified as the solution to a linear integ
equation of the Fredholm type. In Sec. IV some fundame
properties of the optimum directivity as a function of th
constraint are derived as direct consequences of the for
lation developed herein. In particular, it is shown that t
integral equation yields known properties in certain limiti
cases. Also contained in Sec. IV are properties that, tho
physically intuitive, have apparently not been quantified
previous analyses. For all reasonable purposes, the analy
properties discussed in this section are independent of
geometry of the current-carrying region. These consid
ations render the present approach distinctly different fr
rigorous analyses concerned with computational scheme
the numerical approximation of optimum solutions to rad
tion problems, such as the important work by Angell a
Kleinman@25#. ~See also Refs.@26,27#.! Finally, Appendixes
A–D provide the mathematical framework, along with t
treatments of a few mathematically demanding subtleties
Appendix E describes a few cases where the aforementio
integral equation can be solved exactly.

It is emphasized that, due to the assumption that the
rent distribution can be chosen freely, the model studied
Secs. II–IV is idealized. For example, no attempt is ma
there to enforce any ‘‘realizability conditions,’’ such a
boundary conditions on three-dimensional current densit
This latter point is discussed in Sec. V. In practice, of cour
one must specify means to maintain the desired currents
general, this becomes increasingly difficult as the directiv
grows and is beyond the scope of this paper. Nonethele
conjecture regarding the realization of optimum current d
tributions in closed loops is attempted in the discussion
Sec. V.

As also explained in Sec. V, the present analysis is
tended as a tool for the study of currents that give rise to
Einstein needle radiation. The intricate nature of such c
rents, though perhaps not imminently practical from the
cal
e
is
e

ty

rs.
s

are

n
e

l-
-
d
-

s

c.

l
al

u-
e

h

cal
he
r-

for
-

d
ed

r-
in
e

s.
,
In
y
, a
-
f

-
e
r-
-

gineering point of view, is physically attractive. This e
treme case needs to be further understood.

II. FORMULATION

Let J(r ,t)5Re$J(r )e2 ivt% denote a continuous three
dimensional current distribution in a homogeneous and
tropic space.J(r ) is assumed to be localized, i.e., to vani
identically outside of some bounded regionG, and to satisfy
the condition

N5VG
21E

G
dr uJ~r !u2,`, ~2.1!

whereVG denotes the volume of regionG (VG5*G dr ) and
is employed for normalization purposes: When the curr
has a unit magnitude everywhere inG, N is equal to 1. In
particular, whenG is a curver5r (s) (s is the arc length!,
VG denotes its length and Eq.~2.1! is understood as a con

dition on an integral in one dimension, withdr[ds. The
quantityAN will be referred to as ‘‘the current norm.’’

With the e2 ivt time dependence suppressed, the ensu
electric and magnetic fieldsE(r ) andB(r ) outsideG satisfy
the homogeneous Maxwell equations

“3E~r !5 ivB~r !, ~2.2!

“3B~r !52 ivemE~r !, ~2.3!

wheree and m are the dielectric permittivity and magnet
permeability, respectively. With the introduction of the f
miliar vector and scalar potentialsA andF, the electromag-
netic field can be expressed as

E5 ivB2“F, ~2.4!

B5“3A. ~2.5!

Calculations are carried out in the Lorentz gauge, where

“•A5 ivmeF. ~2.6!

Although any current polarization can be treated straightf
wardly, it best serves the purposes of this analysis to c
sider a currentJ parallel to a fixed axis, say,ẑ:

J~r !5H J~r ! ẑ insideG
0 outsideG. ~2.7!

This choice leads to

A~r !5mE
G
dr 8

eikur2r8u

4pur2r 8u
J~r 8!ẑ, ~2.8!

wherek5v/c is the wave number andc5(em)21/2 is the
velocity of light. The electric and magnetic fields are o
tained via direct differentiation ofA(r ), as implied by Eqs.
~2.5! and ~2.3!. Of interest is the field in the radiation zon
described by the leading terms of the asymptotic expans
of E(r ) andB(r ) whenkr5kur u→`. In the spherical coor-
dinate system (r , u, f) defined with respect to thez axis,
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E~r !;2 ivm
eikr

4pr
VGc~ r̂ !sin uû, ~2.9!

B~r !;2 imk
eikr

4pr
VGc~ r̂ !sin uf̂, ~2.10!

where

c~ r̂ !5
1

VG
E
G
dr 8J~r 8!e2 ik r̂•r8, r̂5r 21r . ~2.11!

Evaluation of the Poynting vectorS5 1
2 E3H* ~where the

asterisk indicates complex conjugation! yields the power flux

Sr~ r̂ !5
v2m

2c

1

~4pr !2VG
2uc~ r̂ !u2sin2u. ~2.12!

The total radiated power is

PT5
v2m

8pc
VG

2 T, T5
1

4pE~4p!
dV sin2uuc~ r̂ !u2,

~2.13!

wheredV5sin u du df denotes the infinitesimal solid ang
at (u, f). Substitutingc( r̂ ) from Eq. ~2.11! into Eq. ~2.13!,
interchanging the order of integration, and performing
dV integration result in

T5
1

VG
2EGdrE

G
dr 8J* ~r !K~r ,r 8!J~r 8!. ~2.14!

The associated three-dimensional kernel~derived in Appen-
dix A! reads

K~r ,r 8!5K ~3!~r ,r 8!

5@12~ ẑ•R̂!2#
sin~kR!

kR

2@123~ ẑ•R̂!2#Fsin~kR!

~kR!3 2
cos~kR!

~kR!2 G
5@12~ ẑ•R̂!2# j 0~kR!2@123~ ẑ•R̂!2#

j 1~kR!

kR
,

~2.15!

where

R̂5uRu21R, R5uRu, R5r2r 8, ~2.16!

and j 0 , j 1 denote the spherical Bessel functions of orde
and 1.K (3)(r ,r 8) is real and symmetric. WhenG lies in a
plane perpendicular toẑ, K (3)(r ,r 8) reduces to

K ~3!~kR!5
sin~kR!

kR
1

cos~kR!

~kR!2 2
sin~kR!

~kR!3

5 j 0~kR!2
j 1~kR!

kR
. ~2.17!
e

0

The two-dimensional case results from Eq.~2.8! with the
assumption of a current distribution that is invariant inz.
Accordingly, the potential associated with a current distrib
tion J(r ) in a two-dimensional regionG reads

A~r !5
im

4 E
G
dr 8H0

~1!~kur2r 8u!J~r 8!. ~2.18!

The corresponding scalar field in the radiation zone is@30#

E~r !;2vmVG
ei ~kr2p/4!

A8pkr
c~ r̂ !, ~2.19!

where r5(x,y) is the two-dimensional position vector,r̂
5(cosf,sinf), and c( r̂ ) is given by an equation of the
form ~2.11!. The power fluxSr( r̂ ) and the total radiated
powerPT are given by

Sr~ r̂ !5
vm

16pr
VG

2uc~ r̂ !u2, ~2.20!

PT5
vm

8
VG

2 T, T5
1

2pE0

2p

dfuc~ r̂ !u2. ~2.21!

T can be recast in the form~2.14! with the real and symmet
ric kernel

K~r ,r 8!5K ~2!~r ,r 8!5K ~2!~kR!5J0~kR!, ~2.22!

whereJ0 is the Bessel function of zeroth order.
It is not difficult to modify the foregoing analysis in orde

to treat discrete distributions consisting ofM electric dipoles
or current filaments of amplitudes$I j% at fixed positions$r j%
( j 51, . . . , M ) in two or three dimensions, respectivel
The square of the current norm is then defined as

N5M 21(
j 51

M

uI j u2,`. ~2.23!

With c( r̂ ) in Eq. ~2.11! being simply replaced by

c~ r̂ !5M 21(
j 51

M

I je
2 ik r̂•r j , ~2.24!

all of the preceding expressions for the far field, the pow
flux, and the total radiated power in terms ofc( r̂ ) remain
valid. The discrete analog of Eq.~2.14! reads

T5M 22(
j 51

M

(
l 51

M

I j* K~r j ,r l !I l , ~2.25!

whereK is equal toK (3) or K (2). This equation shows tha
the continuous kernelK(r ,r 8) represents the interferenc
~cross! term in the total power radiated by two parallel cu
rent elements~dipoles or filaments! of unit amplitudes, lo-
cated at positionsr and r 8 (rÞr 8).

Finally, let r̂0 be a direction of preference in the two- o
three-dimensional space. For continuous or discrete cur
distributions, define the quantities
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D5P/T, P5uc~ r̂0!u2, ~2.26!

C5N/T. ~2.27!

With an additional factor of@12( r̂0• ẑ)2# in three dimen-
sions, D is the directivity inr̂0. For continuous surface cur
rents flowing in highly conducting materials or currents
dipoles, C measures the efficiency of the radiating syst
becauseN is proportional to the Ohmic losses.

The optimization problem can now be stated as follow
Problem II.1. Given a current-carrying regionG ~or

$r j%, j 51, . . . , M , in the case of discrete current distr
butions! and r̂0 ( r̂0Þ ẑ in three dimensions!, determine ad-
missible continuous current distributionsJ(r )5Jopt(r ) ~or
discrete$I j5I j

(opt)%) that maximizeD̂@J# ~or D̂@ I #) for fixed

Ĉ@J#5C ~or Ĉ@ I #5C).
The caret over a capital letter means a functional inJ or a

function of I5@ I j #. ‘‘Admissible’’ distributions are continu-
ous~or discrete! localized currents whose norm exists and
finite and nonzero. Because multiplication of the current d
tribution by a constant leavesD̂@J# andĈ@J# unaltered, this
problem does not yield a unique optimum current. For
appropriate values ofC, any such optimum current can b
viewed as the unique solution to a corresponding proble

Problem II.2. Given a current-carrying regionG ~or

$r j%, j 51, . . . , M ) and r̂0 ( r̂0Þ ẑ in three dimensions!,
determine the admissible continuous current distribut
Jopt(r ) ~or discrete$I j

(opt)%) that maximizes the power-flux

functional P̂@J# ~or P̂@ I #) for fixed N̂@J#5N ~or N̂@ I #5N),
T̂@J#5T ~or T̂@ I #5T), and phase Argc( r̂0).

In the case of discrete current distributions, the constr
has an upper~finite! bound, as also discussed by Loet al.
@24#, who useC/M as a constraint. This upper bound b
comes infinite for a continuous current distribution@1,5#. In
Appendixes B and C both of these assertions are shown t
direct consequences of solving Problem II.1. In order to s
plify the analysis, Problem II.2 is addressed first.

III. EQUATION FOR THE OPTIMUM CURRENT

A. Continuous case

For mathematical convenience, an overall phase is cho
for the continuous current distributionJ(r ) so that
Arg c( r̂0)50, permitting

AP̂@J#5
1

VG
E
G
dr J* ~r !eik r̂0•r. ~3.1!

Following the method of Lagrange, as explained in mo
detail in Appendix B, it is expedient to find the stationa
function J5Jst for the functional

F̂@J#5AP̂@J#2l1~N̂@J#2N!2l2~ T̂@J#2T!, ~3.2!

wherel1 andl2 are real. With Eqs.~2.1!, ~2.14!, and~3.1!,
variations of the current renderF̂@J# stationary atJ5Jst if
and only if Jst satisfies the linear integral equation
.
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eik r̂0•r2l1Jst~r !2
l2

VG
E
G
dr 8K~r ,r 8!Jst~r 8!50. ~3.3!

The preceding equation is preferably recast in the form

J̃~r !1
a

VG
E
G
dr 8K~r ,r 8!J̃~r 8!5eik r̂0•r, ~3.4!

where

J̃~r !5l1Jst~r !, a5l2 /l1 . ~3.5!

Alternatively, l1 can be set equal to 1 without loss of ge
erality. Of course,*G dr 8 is interpreted as in Eq.~2.1!.

Equation~3.4! is a Fredholm integral equation of the se
ond kind @31#, which, for a fixed frequency, givesJ(r ) as a
function of a. Therefore, C enters Eq.~3.4! as a paramete
implicitly through a. This equation has a unique admissib
solution for any givena, except for those finite negativ
am’s (m51, 2, . . . ; uam11u>uamu) satisfying the homo-
geneous equation

Jm~r !1
am

VG
E
G
dr 8K~r ,r 8!Jm~r 8!50, m51, 2, . . . .

~3.6!

It is noted in passing that the eigenfunctionsJm (m
51, 2, . . . ) do notnecessarily form a complete set;
other words, there can be admissible currents that are
thogonal to allJm . Such currents do not radiate@32,33#, as
discussed further in Appendix B.

The solution to Eq.~3.4! is an optimum current solving
Problem II.2, i.e.,

Jopt~r ;a!5 J̃~r ;a!, ~3.7!

provided

a.2ua1u. ~3.8!

All admissible currents solving Problem II.1 may be o
tained via multiplication ofJ̃ by an arbitrary constant. Nota
bly, an integral equation resembling Eq.~3.4! has been given
by Katsenelenbaum and Shalukhin@34# in their investigation
of two-dimensional current distributions whose far field a
proximates a prescribed pattern with a given accuracy. W
G is the interior of a closed curve in two dimensions, app
cation of the Laplacian¹2 to both sides of Eq.~3.4! shows
that the optimum current satisfies Helmholtz’s equation inG,
i.e.,

¹2Jopt~r !1k2Jopt~r !50, r5~x,y!PG. ~3.9!

A special case of the integral equation~3.4! results when
a50. The familiar current distribution

J̃0~r ![ J̃~r ;a50!5eik r̂0•r ~3.10!

is then trivially obtained. The preceding expression give
current distribution of uniform magnitude everywhere inG,
which produces the optimum directivity by constructive i
terference. Such an arrangement of currents is conventi
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for achieving high directivity in a specified direction and
herein named ‘‘the reference case.’’ The corresponding c
straint and optimum directivity are

C05D05T0
21 , ~3.11!

where

T0[T̂@J5 J̃0#5
1

VG
2 EG drE

G
dr 8J̃0* ~r !K~r ,r 8!J̃0~r 8!.

~3.12!

It follows that D0 is always larger thanÃ21/2, where~see
also Appendix B!

Ã5Ã~k!5
1

VG
2EGdrE

G
dr 8uK~r ,r 8!u2. ~3.13!

An asymptotic evaluation of this integral fork→` is carried
out in Appendix D. In particular, this calculation verifies th
expected result thatD0 is unbounded at high frequencies.

For uau,ua1u, an approximate expression for the op
mum current can be formally obtained by the method
successive approximations, according to the scheme

J̃~ l 11!~r !1
a

VG
E
G
dr 8K~r ,r 8!J̃~ l !~r 8!5eik r̂0•r,

l 50, 1, . . . , ~3.14!

where the zeroth-order approximationJ̃(0) is the reference
currentJ̃0. This procedure yields

J̃~ l !~r !5g0~r !2ag1~r !1a2g2~r !1•••1~21! la lgl~r !,
~3.15!

where

g0~r !5 J̃0~r !, ~3.16a!

gl~r !5
1

VG
E
G
dr 8Kl~r ,r 8!J̃0~r 8!, l 51, 2, . . . ,

~3.16b!

K1[K, ~3.17a!

Kl~r ,r 8!5
1

VG
E
G
dr 9Kh~r ,r 9! Kl 2h~r 9,r 8!,

h51, 2, . . . , l 21, l 52, 3, . . . . ~3.17b!

For l→` and uau,ua1u, Eq. ~3.15! converges toJ̃. The
radius of convergence of the involved power series ina is
ua1u, bounded below byÃ21/2. As shown in Appendix D,
the whole spectrum$am% moves toward2` at high frequen-
cies. This in turn implies that the radius of convergen
above is unbounded ink, depending on the frequency and th
geometry ofG in a nontrivial way. At high frequencies, Eqs
~3.14!–~3.17b! become advantageous to employ: For a p
scribed geometry of the current-carrying region,
asymptotic evaluation ofgl(r ) ( l 51, 2, . . . ) can becar-
n-

f

e

-

ried out, leading to definite analytical representations for
optimum current. This task is planned for future works.

The integral equation~3.4! admits simple, closed-form so
lutions in terms of Fourier series in some special cases wh
regionG is circularly symmetric. A few such cases of intere
are examined in Appendix E.

B. Discrete case

The optimization of a discrete current distribution leads
a system of linear equations, which is the discrete analog
Eq. ~3.4!. Without further ado, the optimal amplitude
$I j

(opt)% j 51
M are found to satisfy

I j
~opt!1

a

M(
l 51

M

K~r j ,r l !I l
~opt!5eik r̂0•r j , j 51, . . . , M ,

~3.18!

or, in matrix form,

~ 1̄1aK̄ M !I ~opt!5 Ĩ0 , ~3.19!

whereK̄ M5M 21@K(r j ,r l)# is a real and symmetricM3M

matrix, I (opt)5@ I l
(opt)# and Ĩ05@eik r̂0•r l# are M31 column

vectors, and1̄ is the unitM3M matrix. This equation was
derived by Uzsoky and Solyma´r @23#. It admits a unique
solution when2a21 does not coincide with any one of th
~positive! eigenvalues2jm

21 (m51, 2, . . . , M ) of matrix

K̄ M , numbered in order of descending magnitude. This
lution is an optimum current distribution provided~see also
Appendix B!

a,2ujMu or a.2uj1u. ~3.20!

Whenuau,uj1u, Eq. ~3.18! is amenable to an approximatio
scheme analogous to Eq.~3.13!.

IV. SOME PROPERTIES OF THE OPTIMUM
DIRECTIVITY

A. Continuous case

The constraintC may not take arbitrary positive values
For continuous current distributions,

C~a!>ua1u, ~4.1!

which is essentially Eq.~B13! of Appendix B. This mini-
mum value is attained forJ5J1. An expansion of the opti-
mum current in the eigenfunctionsJm (m51, 2, . . . ) of
Eq. ~3.6! enables the derivation of a few properties of t
relevant quantities~as outlined in Appendix C!. Specifically,

lim
a→`

C~a!5`, ~4.2a!

dC~a!

da
.0, ~4.2b!

while
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dD~a!

da
.0, ~4.3a!

lim
a→`

D~a!5`, ~4.3b!

whereD(a)5D̂@ J̃#. The limit ~4.3b! is a consequence of th
speculative condition~C14! introduced in Appendix C. Note
that lettinga→` is equivalent to solving the unconstraine
optimization problem. Witha5a(C),

dD

dC
.0, lim

C→`

D~a!5`, ~4.4!

i.e., the optimal directivity is a monotonically increasin
function of the imposed constraint and is unbounded
large values of the constraint. This result is expected, be
in agreement with Oseen’s Einstein needle radiation@1#. Fur-
thermore,

lim
C→`

dD

dC
50, ~4.5a!

d2D

dC2,0, ~4.5b!

demonstrating that the larger the constraint is, the slower
rate of the directivity increase becomes. The total power
diated by a normalized optimum current becomes arbitra
small asC increases indefinitely. Equation~2.14! indicates
that such a current varies extremely rapidly inr .

B. Discrete case

In contrast, discrete current distributions are expected
introduce finite upper limits to the constraintC5C(a) and
the directivityD5D(a) ~as sketched in Appendix C!. More
precisely, for2uj1u,a5a(C),

uj1u5Cmin5C~a→2uj1u1!

,C~a!<C`[C~a→`!5

(
m51

M

ujmu2uXmu2

(
m51

M

ujmuuXmu2
, ~4.6!

uj1u uX1u25D~a→2uj1u1!

,D~a!<D`[D~a→`! ,

D`5 (
m51

M

ujmuuXmu25 Ĩ0
T K̄ M

21 Ĩ0 ,

~4.7!

dC~a!

da
.0,

dD

dC
.0,

d2D

dC2,0, ~4.8!

while for a,2ujMu,

C`<C~a!,C~a→2ujMu2!5Cmax5ujMu, ~4.9!

ujMu uXMu25D~a→2ujMu2!<D~a!,D` , ~4.10!
r
g

e
-

y

to

dC~a!

da
.0,

dD

dC
,0,

d2D

dC2,0. ~4.11!

In the above,

Xm5M 21(
j 51

M

I j
~m!* eik r̂0•r j , m51, 2, . . . , M ,

~4.12!

I (m) is the eigenvector ofK M corresponding tojm , and Ĩ0
T

denotes the transpose ofĨ0. Note that the maximum optima
directivity D` corresponds to a constraintC` below the
maximum valueCmax. D` is the solution to the uncon
strained optimization problem, as introduced by Uzkov@35#,
and is produced by an optimum current

I ~opt!5const3 (
m51

`

ujmuXm I ~m!. ~4.13!

For constraints higher thanC` , the optimum directivity be-
comes a monotonicallydecreasingfunction of the constraint.
It can be argued that such a behavior is accompanied by
appearance of an appreciable lobe about2 r̂0 in the far-field
pattern. Accordingly, the curveD5D„a(C)…[Dopt(C) ex-
hibits analytic properties different from the case of contin
ous currents. For example, in the vicinity of the end po
C5Cmax,

Dopt~C!5ujMuuXMu21O~A12C/Cmax!, ~4.14!

as proved in Appendix C, and the slope of the curve becom
infinite there. A similar behavior at the lower endpointC
5Cmin is also uncovered in the continuous case. These
sults indicate that the analytic continuation ofDopt(C) from
DC5@Cmin ,Cmax# to complex values ofC encounters at leas
two branch points atC5Cmin andC5Cmax. In the first Rie-
mann sheet,Dopt(CPDC) is the optimum directivity. Encir-
cling the pointC5Cmax once results in entering an adjace
Riemann sheet, whereDopt(CPDC) is presumably a mini-
mum or a saddle point.

A close examination of the spectrum ofK̄ M verifies that
high optimum directivities are favored by largeM and elec-
trically small spacingsur i2r j u ( iÞ j ). Of primary interest are
optimum currents that produce directivities moderat
larger than the reference valueD0 with the corresponding
constraints only slightly aboveC0. This calls for studying
Eq. ~3.4! in specific geometries of the current-carrying r
gion G for positive values ofa that validate expansion
~3.15!. Similar considerations hold in regard to Eq.~3.19!.

V. DISCUSSION

The foregoing analysis admits several generalizations,
also points to certain open questions. In particular, note
following.

~i! If the polarization of the continuous current distrib
tion J(r ) is also free to vary, optimization of the curren
vector yields essentially two independent linear integ
equations: one for the component parallel tor0 and one for a
component normal tor0. The former equation is homoge
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neous and has only the zero solution~for a.0), while the
latter is Eq.~3.4!. This situation is totally different when th
maximized quantity is the power radiated through a so
angle~say, centered atr0).

~ii ! When G consists of Md disjoint regions
G1 , G2 , . . . , GMd

(GiùGj50” for any iÞ j ;

i , j 51, 2, . . . , Md), then Eq.~3.4! reads

J̃~r !1
a

VGF EGi

dr 8K~r ,r 8!J̃~r 8!1 (
j 51

~ j Þ i !

Md E
Gj

dr 8K~r ,r 8!J̃~r 8!G
5eik r̂0•r, rPGi . ~5.1!

~iii ! An important variant of Problem II.1 is the following
Problem V.1.Given a current-carrying regionG ~or r j ,

j 51, . . . , M , in the discrete case! and r̂0, determine ad-
missible continuous current distributionsJ(r )5Jopt(r ) ~or
discrete $I j5I j

(opt)%) that maximize D̂@J# ~or D̂@ I #) for

Ĉ@J#<C ~or Ĉ@ I #<C).
According to Sec. IV, this problem is equivalent to Pro

lem II.1 for continuous current distributions and any~permis-
sible! C>ua1u. In contrast, such an equivalence is ensu
for discrete currents only whenC<C` . For C.C` , the
solution to Problem V.1 is always given by Eq.~4.13!, as the
solution to the unconstrained optimization problem.

~iv! With the norm defined by Eq.~2.1!, three-
dimensional volume currents that maximizeD5P/T under
fixed C5N/T are discontinuous across the boundarySG of
regionG. Conservation of charge demands that the disco
nuity in their component normal toSG be accompanied by
surface charge distributed onSG . A moment’s reflection
leads to the idea that this possibility could be elimina
mathematically by solving a similar optimization problem
some subspace of all currents satisfying Eq.~2.1!; for in-
stance,N could be redefined by properly adding squares
space derivatives of current density components under
integral sign. Such a modification would result in an integ
differential equation for an optimum current density of fix
polarization, which, if supplemented with the appropria
boundary condition, can furnish a solution continuous acr
SG . Formulation of a physically reasonable problem of th
type is left as an open question for future work.

~v! Issues related to bandwidth are also left as open q
tions: It is difficult ~if not impossible! to make quantitative
statements about bandwidths of current-carrying regi
with directivities not much larger thanD0. To make such
statements, one must first specify the method of exciting~or
approximating! the idealized current distribution.

~vi! The properties of current-carrying regions with dire
tivities larger thanD0 are frequency dependent. Previo
studies of highly directive radiating systems have tended
focus on electrically small structures@9#. As evidenced by
recent studies of electrically large, resonant, closed-loop
tennas@15,17,36#, electrically large structures are partic
larly interesting. The formulation developed here is es
cially suitable for finding bounds on the radiating efficienc
of such structures. These bounds are sharper than bo
d

d

i-

d

f
he
-

s

s-

s

to

n-

-

ds

originating from methods that deal with the fields on a s
rounding sphere by leaving the radiating structure unsp
fied.

~vii ! In addition to obtaining bounds for the aforeme
tioned structures, it is of interest to compare the optim
currents obtained from the present formulation to the curr
distributions in resonant closed loops@17#. Are these similar
~at least for some ranges ofC and for some frequencies an
shapes! to one another? If the answer to this question
proved to be positive, it may be possible to excite the op
mum currents in noncircular closed loops. These consid
ations call for a study of optimum, continuous current dist
butions in closed loops.

~viii ! The present approach provides a suitable analyt
tool for studying highly directive continuous currents forC’s
above theC0 of the uniform distribution. For electrically
large structures, a challenging task is to describe appr
mately such currents uniformly in 0,a,`. This investiga-
tion may shed light on the conditions under which the E
stein needle radiation becomes a theoretical possibility
this case, the currents are, in general, rapidly varying fu
tions of r in regionG.

~ix! Though not mathematically compelling, it seem
physically reasonable to presume that Eqs.~4.4!–~4.5b! im-
ply a nearly logarithmic dependence of the optimumDopt(C)
on C, when the latter approaches infinity. Intuitively, it
expected that the leading asymptotic behavior ofDopt(C) as
C→` is universal in two dimensions, being inherent
some ‘‘wide’’ class of current-carrying regionsG. This be-
havior is in turn determined by the leading asymptotic fo
of uamu asm→` and calls for an investigation of the homo
geneous integral equation for largea. These consideration
can possibly be extended to three-dimensional planar
gions, withr0 lying in the plane ofG.

~x! The solution to Eq.~3.4! can be given in a simple
closed form in the case of the two-dimensional circular c
rent distribution. Although the circle does not naturally le
itself to establishing highly directive fields and the conje
ture attempted in~vii ! above does not hold in this case, it
desirable to study the circular closed loop first in detail.

VI. CONCLUSIONS

Starting with Maxwell’s equations, the present work d
velops a self-contained theory of optimally directive curre
in two and three dimensions and studies analytically som
the physical implications. More precisely, maximization
the directivity in the far field of an idealized radiating sy
tem, under the constraint of a fixed ratio of the current no
squared over the total radiated power, is shown to lead
linear integral equation for the optimum continuous curre
In this equation, the dependence on the constraint enters
plicitly through the Lagrange multipliera. This integral
equation is recognized as a tool for studying analytica
currents that produce directivities larger than the unifo
distribution ~reference case!, wherea assumes positive val
ues. One range ofa that is of interest involves small in
creases in directivity above the reference case. The optim
current may then be calculated by use of iteration on
integral equation. Another range of physical interest cor
sponds to the extreme case in whicha approaches infinity



in

ge
nd
f t
et

es
x-
Fo
um
i-

te
ow
s

en
im
ro

.
e

W
M
on

e
-J

or

ne

i-
y

za-

he

q.

nel

2538 PRE 58MARGETIS, FIKIORIS, MYERS, AND WU
and currents reversing rapidly in space give rise to the E
stein needle radiation.

A close examination of Eqs.~3.4! and ~3.19! for the op-
timum continuous and discrete currents reveals that the
eral properties of the optimum directivity, currents, a
fields are related to the eigenvalues and eigenfunctions o
corresponding kernel or matrix, respectively. For discr
currents, the number of the eigenvalues is finite, resulting
a ~finite! maximum directivity for a constraintsmaller than
its maximum~finite! value. When the constraint approach
its maximum value, the slope of the optimum directivity e
hibits a singular behavior as a function of the constraint.
continuous currents, the eigenvalues become infinite in n
ber and the optimum directivity tends to infinity monoton
cally, with an ultimately decreasing rate of increase.

The present formulation is applicable to any size ofG.
However, it is more advantageous for the study of the in
esting case of electrically large structures: First, they all
for simplifying approximations in the derived equation
such as the iteration scheme~3.14!. This is because the
wavelength is small compared to the maximum linear dim
sion of G and asymptotic methods become effective, as
plied by the analysis of Appendix D. Second, they may p
vide a link to other recent studies and experiments@17#,
illuminating the difficult problem of realization of currents
We plan to apply the theoretical framework discussed her
electrically large systems in future works.
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APPENDIX A: EVALUATION OF K„r,r 8…

An integral expression for the three-dimensional ker
entering Eq.~2.14! reads

K ~3!~r1 ,r2!5
1

4pE~4p!
dV sin2ueik r̂•R,

R5r12r2 , r1 ,r2PG, ~A1!

where integration is understood overr̂ @r5(x,y,z)#, andu is
the angle betweenẑ and r̂ . Let (x8,y8,z8) be a rotated Car-
tesian coordinate system such thatẑ85R̂ and x̂8 is coplanar
with ẑ and R. Let x denote the angle betweenR and ẑ
( ẑ•R̂5cosx). With the introduction of the spherical coord
nate system (r ,b,g) associated with the primed system b
convention, Eq.~A1! is cast in the form
-

n-

he
e
in

r
-

r-

,

-
-
-

to

.
.
.

r-
-

t

l

K ~3!~r1 ,r2!5
1

4pE0

2p

dgE
0

p

db sin b

3@12sin2x sin2b cos2g2cos2x cos2b

2sin 2x sin b cosb cosg#eikR cosb

5
1

4F ~22sin2x!E
21

1

dj eikRj

1~sin2x22 cos2x!E
21

1

dj j2eikRjG
5sin2x

sin~kR!

kR

1~123 cos2x!Fcos~kR!

~kR!2 2
sin~kR!

~kR!3 G ,
~A2!

which is Eq.~2.15!.
In two dimensions, the corresponding integral reads

K ~2!~r1 ,r2!5
1

2pE0

2p

dg eikR cosg. ~A3!

This is easily identified with Eq.~2.22!.

APPENDIX B: DETAILED STUDY OF THE
MAXIMIZATION PROBLEM

This appendix investigates in some detail the maximi
tion of the power-flux functionalP̂@J#. In particular, it pro-
vides a description of the optimum current in terms of t
appropriate eigenfunctions.

1. Continuous case

The kernelK(r ,r 8) of the integral equation~3.4! is Her-
mitian. It follows that the various nonzero solutionsJm (m
51, 2, 3, . . . ) of thehomogeneous counterpart of E
~3.4!, viz.,

J~r !1aKopJ~r !50, KopJ~r ![
1

VG
E
G
dr 8K~r ,r 8!J~r 8!,

~B1!

are orthogonal, corresponding to real eigenvaluesam num-
bered in order of ascending magnitude (uamu→` for m
→`), with eigenvalues of multiplicityl .1 being repeatedl
times. Theam are negative becauseT̂@J#>0 for any admis-
sible currentJ, dictating thatK(r ,r 8) is a positive kernel.
The set$Jm% is not necessarily complete@31#. It is noted in
passing thatK(r ,r 8) is smooth in (r ,r 8)PG3G, i.e., it has
continuous partial derivatives of any order there. The ker
decomposition

K~r ,r 8!5 (
m51

` Jm* ~r !Jm~r 8!

uamu
~B2!

entails the rather simple formula
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(
m51

`
1

uamu
5

1

VG
E
G
dr K~r ,r !5H 2/3 in three dimensions

1 in two dimensions.
~B3!

In the Dirac notation

^g,h&5
1

VG
E
G
dr g* ~r !h~r !, ~B4!

the normalization ofJm so that̂ Jm ,Jm8&5dmm8 and the use
of Eq. ~B1! give a formal representation for the solutionJ̃ of
Eq. ~3.4!:

J̃~r !5 J̃0~r !2a (
m51

`
1

uamu
Am

11a/uamu
Jm~r !. ~B5!

In the above,

Am5^Jm ,J̃0&, (
m51

`

uAmu251, J̃0~r !5eik r̂0•r.

~B6!

A close examination of Eq.~3.4! reveals thatJ̃(r ) is a
smooth function ofr , wherer lies inside regionG (rPG).
This is also true for eachJm(r ). If G is a curve, differentia-
tion is understood with respect to the arc lengths. Series
~B5! converges uniformly inrPG.

For the purpose of showing that Eq.~B5! indeed maxi-
mizesP̂@J#, $Jm%m51

` is complemented with an orthonorm

set $J̆p%p51
L , whereL can possibly be infinite (L→`), so

that their union forms a complete set and

^Jm ,J̆p&50, m51, 2, . . . , p51, 2, . . . , L.
~B7!

Then any admissible current distributionJ(r ) can be ex-
panded in a Fourier-type series

J~r !5 (
m51

`

amJm~r !1 (
p51

L

bpJ̆p , ~B8!

where

am5^Jm ,J&, m51, 2, 3, . . . , ~B9!

bp5^J̆p ,J&, p51, 2, . . . , L. ~B10!

It follows that

N̂@J#5^J,J&5 (
m51

`

uamu21 (
p51

L

ubpu2, ~B11!

T̂@J#5^J,KopJ&5 (
m51

` uamu2

uamu
. ~B12!

Consequently,

T̂@J#<ua1u21 if ^J,J&51, ~B13!
which implies thatua1u is the minimum value of the con
straintĈ@J#, attained with the normalized currentJ5J1. By
use of Eq.~B1!,

1

ua1u2
,Ã~k!, Ã~k!5

1

VG
2EGdrE

G
dr 8uK~r ,r 8!u2.

~B14!

In the space orthogonal toJ1 , . . . , Jm21, similar consid-
erations hold for each of the other eigenvaluesam (m>2).
In particular,

^Jm ,KopJm&5
1

uamu
, lim

m→`
^Jm ,KopJm&50, ~B15!

suggesting thatĈ@J# does not have a~finite! upper bound.
According to Eq.~B12!, if currentsJ̆p exist, they do not

radiate. Due to the analyticity of the electromagnetic field
free space, it is concluded that the field produced by eachJ̆p
vanishes identically outside ofG @37#. Hence

^ J̃0 ,J̆p&50, p51, 2, . . . , L. ~B16!

In the case of two-dimensional current distributions, it is
some interest to note that when regionG is a closed loop, a
single ‘‘nonradiating’’ currentJ̆1 exists (L51) only at the
discrete spectrum of frequencies that solve the internal
richlet problem. No such current exists ifG is an open curve.
WhenG is the interior of a closed loop,$J̆p% is always infi-
nite, as is illustrated for the circular disk in Appendix E.

Accordingly, the scalar field atr̂0 is given by

Ĉ@J#5 (
m51

`

amAm* . ~B17!

Without loss of generality,Am are assumed to be real (Am

5Am* ).

Since N̂@J# and T̂@J# are independent of the phase
Arg am and Arg bp , the latter can be freely chosen t

maximizeuĈ@J#u5AP̂@J#. A necessary condition for maxi
mum realĈ@J# is

amAm>0, m51, 2, 3, . . . , ~B18!

while it is mathematically convenient to takebp to be real
(bp5bp* ). The task is thus assigned to apply the method
Lagrange multipliers in order to maximize the real function

Ĉ@$am%,$bp%#5c~ r̂0!5 (
m51

`

amAm , ~B19!

by keeping N̂@J#5N and T̂@J#5T fixed. For finite sets
$am%m51

n1 and $bp%p51
n2 (n2<L), n5n11n2, and sufficiently

large n1, Eqs. ~B11! and ~B12! together define a smoot
n22 manifoldMn22 as the intersection of ann21 sphere
with an n21 ellipsoid~for n250), or ann21 cylinder~for
n2>1). The geometry is easily visualized forn53, where
Mn225M1 consists of two smooth closed curves. Sin
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any linear function can be described as a set of parallel
perplanes, maximization or minimization inMn22 of the
function

Cn~a1 , . . . ,an1
,b1 , . . . ,bn2

!5 (
m51

n1

amAm ~B20!

occurs at points where the corresponding hyperplanes
tangent toMn22. Clearly, the method of Lagrange multipl
ers yields all desired maxima or minima ofCn . By relaxing
the requirements of mathematical rigor, these considerat
can be extended to infiniten (n→`). Accordingly, the op-
timum amplitudes$am

(opt)% and $bp
(opt)% are stationary points

of

F̂@J#5Ĉ@J#2n1~N̂@J#2N!

2n2~ T̂@J#2T!, for n1 ,n2 real. ~B21!

The first variation ofF̂@J# vanishes when

2n1~11n/uamu!am
~opt!5Am , 2n1ubp

~opt!u50, n5n2 /n1 .
~B22!

Ĉ is evidently maximized only whenn1 is non-negative and
n.2ua1u. In the spirit of Sec. III, n1 is set equal to 1/2,
leading to

am
~opt!5

Am

11n/uamu
. ~B23!

Equation~B5! is then recovered witha5n:

Jopt~r !5 (
m51

`
Am

11a/uamu
Jm~r !. ~B24!

Therefore, fora.2ua1u, the unique admissible solution t
the integral equation~3.4! is an optimum current distribution

A close examination of Eq.~B22! reveals that the metho
of Lagrange multipliers furnishes a maximum only fora.
2ua1u. In particular, fora→2ua1u1,

C~a!→ua1u1. ~B25!

For C5ua1u, direct use of the definition for the constraintC
gives a current proportional to the eigenfunctionJ1(r ). The
limit a→` is equivalent to takingn150 ab initio; therefore,
it gives the solution to the unconstrained optimization pro
lem.

By virtue of Eqs.~B11!, ~B12!, and~B19!,

P~a!5 P̂@ J̃#5S (
m51

` uAmu2

11a/uamu D 2

, ~B26!

N~a!5N̂@ J̃#5 (
m51

` uAmu2

~11a/uamu!2 , ~B27!

T~a!5T̂@ J̃#5 (
m51

`
1

uamu
uAmu2

~11a/uamu!2 , ~B28!

C~a!5N~a!/T~a!, D~a!5P~a!/T~a!. ~B29!
y-

re

ns

-

Equations~B3! and ~B6! ensure absolute and uniform-in-a
convergence of Eqs.~B24! and ~B26!–~B29! for any finite
complexaÞam (m51, 2, 3, . . . ) andr inside regionG.

Let G denote any finite closed contour in the complexa
plane not enclosing or passing through any of the pointsam .
Integration of~B24! alongG yields

R
G
da Jopt~r ;a!5 (

m51

`

AmJm~r ! R
G

da

11a/uamu
50.

~B30!

Hence Jopt(r ;a) is a meromorphic function ofa for fixed r
insideG, with simple poles ata5am (m51, 2, 3, . . . ).
Similarly, P(a), N(a), andT(a) are meromorphic func-
tions of a, with double poles ata5am .

By virtue of the binomial expansion

S 11
a

uamu D
2q

5(
l 50

`
~21! l

l !

~ l 1q21!!

~q21!! S a

uamu D
l

,

for q an integer.0, ~B31!

which is valid for uau,uamu, power series ina of all opti-
mum quantities can be derived. Foruau,ua1u, the optimum
current is expanded as

Jopt~r ;a!5(
l 50

`

~21! la lgl~r !, ~B32!

where

gl~r !5 (
m51

`

Amuamu2 lJm~r !, l 50, 1, 2, . . . ,

~B33!

given in integral form~for l>1) by Eq.~3.16b!.

2. Discrete case

Given the eigenvaluesujmu21 and eigenvectorsI (m) (m
51, 2, . . . , M ) of the real, symmetric, and positive defi
nite matrix K̄ M of Eq. ~3.19! in the M -dimensional vector
space, along with the definition~4.12!, the foregoing analysis
for continuous current distributions can be basically appl
to discrete distributions. Heuristically speaking, the ma
replacements are

1

VG
E
G
dr 8→M 21(

l 51

M

, rPG→$r j% j 51
M , (

m51

`

→(
m51

M

~B34!

and

Jm~r !→I l
~m! , Am→Xm , am→jm

~ l ,m51, 2, . . . , M !. ~B35!

Two points need to be emphasized here.
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~i! Since the spectrum ofK̄ M is finite, the permissible
range ofn5a in an equation analogous to Eq.~B22! now
extends to (2`, 2ujMu) and the correspondingn1 becomes
negative.

~ii ! I (m) always form a complete set. Therefore, the co
cept of nonradiating currents does not apply.

APPENDIX C: PROPERTIES OF THE OPTIMUM
QUANTITIES

In this appendix, some general properties of the quanti
involved in the optimization problem are derived.

1. Continuous case

It is shown thatC(a) does not have a~finite! upper
bound. For any fixedA@1 and any positivee!1, there ex-
ists anm05m0(A)@1 such that

uamu.A, m.m0 , ~C1!

while

(
m51

m0 1

uamu
uAmu2

~11a/uamu!2 ,
e

A
, ~C2!

provideda5a(e) is sufficiently large. Consequently,

C~a!>A

(
m5m011

` uAmu2

~11a/uamu!2

e1 (
m5m011

` uAmu2

~11a/uamu!2

. ~C3!

Sincee can be chosen arbitrarily small, Eq.~4.2a! follows.
From Eqs.~B26!–~B28! it is inferred thatP(a), N(a),

andT(a) are monotonically decreasing functions ofa. Ob-
viously,

AP~a!2N~a!5aT~a!, ~C4a!

@AP~a!#852T~a!, ~C4b!

where the prime denotes differentiation with respect toa. It
is of some interest to note that by inspection of these eq
tions the optimum scalar field atr̂5 r̂0 equals

c~ r̂0 ;a!5AP~a!5
1

aE0

a

dj N~j!, ~C5!

i.e., it is the mean value ofN(a) over the ‘‘past’’ positive
Lagrange multipliersa. After some straightforward algebra

C8~a!52
1

T~a!2 @2T~a!21AP~a!T8~a!#

5
2

T~a!2F S (
m51

` uAmu2

11a/uamu D
3S (

m51

`
1

uamu2
uAmu2

~11a/uamu!3D
-

s

a-

2S (
m51

`
1

uamu
uAmu2

~11a/uamu!2D 2G . ~C6!

Application of the Cauchy-Buniakowsky-Schwarz inequal
@38# to the right-hand side of the preceding equation res
in Eq. ~4.2b!. The derivative of the optimum directivity sat
isfies

D8~a!5
AP~a!

T~a!2
@22T~a!22AP~a!T8~a!#

5AP~a! C8~a!, ~C7!

which gives Eqs. ~4.3a! and ~4.5a!. Differentiation of
D8(a)/C8(a) above with respect toC(a) yields Eq.~4.5b!.

Equation~C7! implies that, fora→`, D(a) is either un-
bounded (D→`) or approaches a finite upper bound mon
tonically ~as is seen to be true for the discrete case!. For
sketching an argument in favor of the former possibility,
v(a)5P(a)21/2. Equation~C4b! along with the definition
of D(a) produce a trivial first-order differential equation fo
v(a), namely,

v8~a!2D~a!2150, v~0!51, ~C8!

leading to

1

AP~a!
511E

0

a dj

D~j!
. ~C9!

It is immediately inferred that if lim
a→`

D(a)5const, then

aAP(a) should be bounded fora→`. In view of the in-
equalities

1

2 (
m51

m0

uamuuAmu2,a AP~a!, (
m51

`

uamuuAmu2,

~C10!

where

uamu.a for m.m05m0~a!,

uamu<a otherwise, ~C11!

aAP is bounded if and only if the series(m51
` uamuuAmu2

converges. Let

cm~ r̂ !5
1

VG
E
G
dr 8e2 ik r̂•r8 Jm~r 8!, m51, 2, . . . .

~C12!

Evidently, cm( r̂ ) is smooth in r̂ , expressing the far-field
pattern of the ‘‘eigencurrent’’Jm(r ). The left-hand side of
Eq. ~B15! yields

1

uamu
5V0

21E dV k~ r̂ !ucm~ r̂ !u25k~ r̂m!ucm~ r̂m!u2,

~C13!

wheredV5sinu du df, k( r̂ )5sin2u, andV054p in three
dimensions anddV5df, k( r̂ )51, and V052p in two
dimensions. The introduction of the reasonable condition
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ucm~ r̂m!u25O„ucm~ r̂0!u2
… for m→`, ~C14!

at least for an infinite subsequence of$m51, 2, . . .%, en-
tails

1

uamu
<O~ uAmu2!. ~C15!

The preceding condition is sufficient for the divergence
the series(m51

` uamuuAmu2, contradicts the assumption of
boundedaAP(a), and therefore ensures Eq.~4.3b!. An in-
vestigation in mathematical rigor of the generality of E
~C14! or ~C15! is beyond the scope of this paper.

2. Discrete case

Replacements~B34! and ~B35! suggest that the limiting
values of C(a) and D(a) for a→` are finite. When
a.2uj1u, Eqs.~C4!–~C7! and their direct consequences r
main valid and Eqs.~B26!–~B29!, once modified, readily
furnish Eqs.~4.6!–~4.8!. For a,2ujMu, the replacement

AP~a!→2AP~a! ~C16!

in Eqs.~C4!, ~C6!, and~C7! yields Eqs.~4.9!–~4.11!.
In order to derive Eq.~4.14!, let a52e2ujMu. For e

→01,

P~a!5uXMu4ujMu2 e2212uXMu2ujMu (
m51

M21 uXmu2

ujMu/ujmu21
e21

1O~1!, ~C17!

N~a!5uXMu2ujMu2 e221 (
m51

M21 uXmu2

~ ujMu/ujmu21!2 1O~e!,

~C18!

T~a!5uXMu2ujMu e221 (
m51

M21
1

ujmu
uXmu2

~ ujMu/ujmu21!21O~e!.

~C19!

Equations~C18! and ~C19! combined give

e5
uXMuujMu

F (
m51

M21 uXmu2

ujMu/ujmu21G1/2 A12C/ujMu

1O„~12C/ujMu!3/2
…. ~C20!

By use of Eq.~C17! anda5a(C),

Dopt~C!2Dopt~Cmax
2 !

52ujMu uXMu
(

m51

M21 uXmu2

ujMu/ujmu21

F (
m51

M21 uXmu2

ujMu/ujmu21G1/2 A12C/ujMu

1O~12C/ujMu!. ~C21!
f

.

In the first Riemann sheet, the positive square root is ta
when C lies in DC5@ uj1u,ujMu#. Analytic continuation of
Dopt(C) to an adjacent sheet via crossing the branch cut
emanates fromC5ujMu yields valuesDopt(CPDC) below
the optimum directivity. Therefore, the monotonically d
creasing part of the optimum curveDopt(C), with a local
maximum atC5C` , is continued to a monotonically in
creasing curve belowDopt(Cmax).

It is of some interest to examine briefly the form of th
optimum distributionI (opt) whenkr jl 5kur j2r l u@1 for all j
Þ l ( j ,l 51, 2, . . . , M ; M is fixed; r @r j l in the radia-
tion zone!. The off-diagonal elements ofK̄ M then become
O„(kr jl )

21
…. It is therefore concluded that form

51, 2, . . . , M ,

ujmu;H 3M /2 in three dimensions

M in two dimensions. ~C22!

The optimum distribution normalized to unity is

I ~opt!; Ĩ0 , ~C23!

i.e., it approaches the uniform distribution. It follows that

C~a!;D~a!;H 3M /2 in three dimensions

M in two dimensions. ~C24!

These results corroborate the findings of Loet al. @24#, with
their Q being equal toC/M .

APPENDIX D: AN ASYMPTOTIC EVALUATION OF Ã„k…

The integral

Ã~k!5
1

VG
2EGdrE

G
dr 8uK~r ,r 8!u2 ~D1!

gives a conservative estimate for the radius of converge
Ra5ua1u of the Neumann series~3.15! for l→`. More pre-
cisely,

Ra>Ã~k!21/2. ~D2!

More accurate estimates involve repeated integrals
K(r ,r 8) @31#. In this appendix, Ã(k) is studied systemati-
cally to leading order ink21 at high frequencies (k→`) by
use of the Mellin transform technique@39#. Roughly speak-
ing, ‘‘high frequencies’’ here means that the wavelength
much shorter than the maximum linear dimension of reg
G. The analysis can be extended to higher orders ink21, but
the calculations become more elaborate.

Let h(t) be an integrable function defined on 0<t,`.
The Mellin transform pair is given by

h̄~z!5E
0

`

dt t2zh~ t !, ~D3!

h~ t !5
1

2p i Ec2 i`

c1 i`

dz tz21h̄~z!, c real, ~D4!
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where the integration path lies in the region of thez plane
that ensures convergence of Eq.~D3!. For the present pur
pose, consider the example

h~ t !5H tq21~ ln t !n if t>1

0 if 0<t,1, ~D5!

whereq is real andn is an integer. Its Mellin transform is

h̄~z!5
G~n11!

~z2q!n11
~D6!
c
at

e

f

v

e-

in
and Re z.q is the region of integration for which Eq.~D3!
makes sense. This example indicates that terms of the f
tq(ln t)n in the asymptotic series of a complicatedh(t) for

t→` can be found from the behavior ofh̄(z) near its poles
lying to the left of the region for which Eq.~D4! is mean-
ingful. This task, involving only power dependences in t
vicinities of isolated points, is easier to carry out than deal
with logarithms int directly.

For the three-dimensional kernel, the Mellin transform
Ã(k) reads@40#
Ã̄~3!~z !5
p

4
22z

G~11z! GS 12z

2 D
GS 11

z

2D 2

GS 31z

2 D
1

VG
2EGdrE

G
dr 8@12~ ẑ•R̂!2#2R211z

1
p

16
22z

G~31z! GS 12z

2 D
GS 21

z

2D 2

GS 71z

2 D
1

VG
2EGdrE

G
dr 8@123~ ẑ•R̂!2#2R211z

2
p

4
22z

G~21z! GS 12z

2 D
GS 51z

2 D GS 21
z

2D GS 11
z

2D
1

VG
2EGdrE

G
dr 8@12~ ẑ•R̂!2#@123~ ẑ•R̂!2#R211z. ~D7!
Note that the multiplicative factors of theG functions have
simple poles at all positive odd integers and atz521,23,
25. For k→`, only the negative poles are taken into a
count. Three cases need to be distinguished for the sp
integrals.

~i! If G is the interior of a closed surface, then all of th
above integrals exhibit a pole atz522. The inversion for-
mula ~D4! requires21,Re z,1. In the neighborhood o
the nearest left pole atz521,

Ã̄~3!~z !;
1

2

1

z11

1

VG
2EGdrE

G
dr 8

@12~ ẑ•R̂!2#2

R2
. ~D8!

By use of the pair~D5! and ~D6!, for k→`,

Ã~3!~k!;
1

2

1

VG
2EGdrE

G
dr 8

@12~ ẑ•R̂!2#2

~kR!2
. ~D9!

It is noted in passing that this result may also be obtained
approximation ofK (3)(r ,r 8) in Eq. ~D1! by its leading term

@12( ẑ•R̂)2#@sin(kR)/kR# whenkR@1.
~ii ! If G is a sufficiently smooth surface, all spatial int

grals have a simple pole atz521. In order to single this
out, the inner integration is performed in the vicinity ofr 8
5r by use of a local tangent-normal system of axes, lead
to
-
ial

ia

g

Ã̄~3!~z !;
p

8

1

~z11!2

1

VG
2EGdr @312~ ẑ•ĥ!213~ ẑ•ĥ!4#

for z→21, ~D10!

whereĥ 5ĥ (r ) is a unit vector normal toG at point r . By
virtue of Eq.~D5!, for k→`,

Ã~3!~k!;
p

8

ln k

k2VG
H 31

1

VG
E
G
dr @2~ ẑ•ĥ!213~ ẑ•ĥ!4#J .

~D11!

Note the appearance of the logarithm ink. WhenG lies en-
tirely in the xy plane, this leading term simplifies to

Ã~3!~k!;
p ln k

k2VG
. ~D12!

~iii ! If G is a curver5r (s) (s is the arc length, 0<s
<VG), all integrals exhibit a simple pole atz50. After some
straightforward algebra,

Ã~3!~k!;
p

15

1

kVG
H 72

1

VG
E

0

VG
ds @2~ ẑ•û!223~ ẑ•û!4#J ,

~D13!
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whereû5û(s)5udr /dsu21 (dr /ds) is a unit vector tangen
to the curve at pointr5r (s). WhenG lies in thexy plane,
the leading term above reduces to

Ã~3!~k!;
7p

15

1

kVG
. ~D14!

A similar analysis can be applied in two dimension
where the Mellin transform ofÃ(k) is @40#

Ã̄~2!~z !522z

G~z! GS 12z

2 D
GS 11z

2 D 3

1

VG
2EGdrE

G
dr 8R211z.

~D15!

The multiplicative factor of theG functions contributes
simple poles at all negative even integers, atz50, and at all
positive odd integers. The inversion path is initially restrict
in 0,Re z,1. Two cases need to be considered.

~i! When G is the interior of a closed curve, the spati
integral is analytic atz50. Accordingly,

Ã~2!~k!;
1

p

1

VG
2EGdrE

G
dr 8

1

kR
. ~D16!

In analogy with Eq.~D9!, this result can be verified by re
placingK (2)(r ,r 8)5J0(kR) in Eq. ~D1! by the leading term
A2/(pkR) cos (kR2p/4) whenkR@1.

~ii ! If G is a curve, spatial integration revealsz50 as a
double pole ofÃ̄ (2)(z), leading to

Ã~2!~k!;
2

p

ln k

kVG
. ~D17!

APPENDIX E: A FEW EXACTLY SOLUBLE CASES OF
THE INTEGRAL EQUATION FOR THE OPTIMUM

CURRENT

In this appendix, the integral equation~3.4! is solved ex-
actly in some simple cases where regionG has a rotational
symmetry. This is achieved by Fourier expanding in the
sociated angular variablef.

1. Circular loop in two dimensions

In two dimensions, consider a circle of radiusa centered
at the origin. For definiteness, letr̂0 be parallel to the posi-
tive y axis, in the directionf5p/2 of the associated pola
coordinate system (r ,f). With J̃(r )5 j (f) @j (f) periodic#,
Eq. ~3.4! reads

j ~f!1
a

2pE0

2p

df8J0S 2ka sin
f2f8

2 D j ~f8!5eika sin f.

~E1!

Substitution into this equation of

j ~f!5 (
n52`

`

f neinf ~E2!
,

-

and use of the formulas

eika sin f5 (
n52`

`

Jn~ka!einf, ~E3!

J0S 2ka sin
t

2D5 (
m52`

`

Jm~ka!2eimt, t5f2f8,

~E4!

yield decoupled equations for the coefficientsf n :

f n5 f n~a!5
Jn~ka!

11aJn~ka!2 , n52`, . . . , `.

~E5!

The square of the optimum current norm is

N5N~a!5 (
n52`

`

u f nu25 (
n52`

`
Jn~ka!2

@11aJn~ka!2#2 . ~E6!

The optimum scalar field equals

c~ r̂ ;a!5
1

2pE0

2p

df8 j ~f8;a!e2 ika cos~f2f8!

5 (
n52`

`

i 2nf nJn~ka!einf

5 (
n52`

`
Jn~ka!2

11aJn~ka!2ein~f2p/2!, ~E7!

where r̂5(cosf,sinf). The total radiated power equals

T~a!5
1

2pE0

2p

dfuc~ r̂ ;a!u25 (
n52`

`

u f nu2Jn~ka!2

5 (
n52`

`
Jn~ka!4

@11aJn~ka!2#2 . ~E8!

Compare with Ref.@34#.

2. Circular disk in two dimensions

With J̃(r )5 j (r ,f) (0<r<a), the integral equation read

j ~r ,f!1
a

pa2E
0

2p

df8E
0

a

dr8r 8

3J0„kAr 21r 8222rr 8cos~f2f8! …j ~r 8,f8!

5eikr sin f. ~E9!
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Let

j ~r ,f!5 (
n52`

`

f n~r !einf. ~E10!

By invoking the addition formula

J0~kAr 21r 8222rr 8cost !5 (
m52`

`

Jm~kr !Jm~kr8!eimt,

~E11!

it is found by inspection that thef n(r ) satisfy

f n~r !5F12
2a

a2 E
0

a

dr8 r 8 f n~r 8!Jn~kr8!GJn~kr !,

n52`, . . . , `. ~E12!

This dependence onr is expected becausej (r ,f) should
comply with Eq. ~3.9!. The direct substitution off n(r )
5lnJn(kr) into Eq. ~E12! furnishes

ln5F11
2a

a2 E
0

a

dr8r 8Jn~kr8!2G21

. ~E13!

The remaining integration can be carried out explicitly
noticing that

xJn~x!25
1

2

d

dx
$x2@Jn~x!22Jn11~x!Jn21~x!#%.

~E14!

Finally,

j ~r ,f;a!5 (
n52`

`
Jn~kr !

11a@Jn~ka!22Jn11~ka!Jn21~ka!#

3einf, ~E15!

whereJn(x)22Jn11(x)Jn21(x).0 for all realx. It follows
that

N~a!5 (
n52`

`
Jn~ka!22Jn11~ka!Jn21~ka!

$11a@Jn~ka!22Jn11~ka!Jn21~ka!#%2
,

~E16!
c~ r̂ ;a!5
1

pa2E
0

2p

df8E
0

a

dr8r 8 j ~r 8,f8;a!e2 ikr 8cos~f2f8!

5 (
n52`

`
Jn~ka!22Jn11~ka!Jn21~ka!

11a@Jn~ka!22Jn11~ka!Jn21~ka!#

3ein~f2p/2!, ~E17!

T~a!5 (
n52`

`
@Jn~ka!22Jn11~ka!Jn21~ka!#2

$11a@Jn~ka!22Jn11~ka!Jn21~ka!#%2
.

~E18!

Alternatively, by a comparison of Eq.~E11! to Eq. ~B2!,
all of the above final formulas for the circle or disk can
easily reproduced through the formulation of Appendix
For instance, it is recognized that the set of eigenval

$am%m51
` for the disk is identified with$ān%n50

` , where

ān52@Jn~ka!22Jn11~ka!Jn21~ka!#21, n50, 1, . . . ,

~E19!

each eigenvalue fornÞ0 being doubly degenerate, with co
responding eigenfunctionsJn(kr) e6 inf. This set is not
complete; an infinite set of linearly independent functio
orthogonal to each eigenfunction can be constructed, for
stance, from the basis $Jn(kn,pr )e6 inf; n
50, 1, . . . ; p51, 2, . . .%, wherekl ,1a, kl ,2a, . . . are
the positive zeros ofJl(x) arranged in ascending order o
magnitude. The underlying reason for this lack of comple
ness is the description of the current by two independ
space variables, as opposed to the far-field dependenc
one space variable. Note that ifk coincides withkl ,p for
somel and p, theneil f becomes a nonradiating current fo
the circular loop of radiusa. ~See also Ref.@33#.!

3. Circular loop in three dimensions

Consider a loop of radiusa centered at the origin. With
the current polarization (ẑ) chosen to be perpendicular to th
plane of the loop andr̂0 parallel to the positivey axis, the
integral equation~3.4! becomes

j ~f!1
a

2pE0

2p

df8K~f2f8! j ~f8!5eika sin f,

~E20!

K~t!5
sin w

w
1

cosw

w2 2
sin w

w3 5
1

4E21

1

dj ~11j2!eiwj,

~E21!

w5w~t!52ka sin
t

2
. ~E22!

Starting with Eq.~E2! and following the previous steps lea
to
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f n5
Jn~ka!

11aUn~ka!
, ~E23!

Un~ka!5
1

2pE2p

p

dt K~t!e2 int5
1

8pE21

1

dj ~11j2!E
2p

p

dt eiw~t!jcosnt5
1

2E0

1

dj ~11j2!J2n~2kaj!

5
1

4kaH ~2n21!jJ2n~j!S21,2n21~j!2jJ2n21~j!S0,2n~j!1
j

~2ka!2 @~2n11!J2n~j!1~2n11!~2n21!2

3J2n~j!S21,2n21~j!2jJ2n21~j!2~4n221!J2n21~j!S0,2n~j!#J U
j50

2ka

5
p

4 F11
4n221

~2ka!2 G$J2n21~2ka!@E2n~2ka!1Y2n~2ka!#2J2n~2ka!@E2n21~2ka!1Y2n21~2ka!#%

1
1

4kaF2n11

2ka
J2n~2ka!2J2n21~2ka!1

4n221

~2ka!2 11G , n52`, . . . , `, ~E24!

whereSm,n is Lommel’s function,En is Weber’s function@40#, andUn(ka).0 for all ka. With theseUn(ka), it follows that

c~ r̂ ;a!5 (
n52`

`
Jn~ka!Jn~ka sin u!

11aUn~ka!
ein~f2p/2!, ~E25!

N~a!5 (
n52`

`
Jn~ka!2

@11aUn~ka!#2 , ~E26!

T~a!5 (
n52`

`
Un~ka!Jn~ka!2

@11aUn~ka!#2 , ~E27!

where (r ,u,f) is the usual spherical coordinate system. Again, compare with Eqs.~B2! and ~B26!–~B28! of Appendix B.
Likewise, Eq.~3.19! can be solved explicitly in the case where adiscreterotational symmetry obtains, such as wh

filaments or dipoles are distributed uniformly along a circle, via application of the discrete Fourier transform.~In the engi-
neering literature, this technique is known as the ‘‘method of symmetrical components’’; see, for instance, Ref.@41#.!
ag.

u,

l-

ag.
@1# C. W. Oseen, Ann. Phys.~Leipzig! 69, 202 ~1922!.
@2# A. Einstein, Phys. Z.10, 817 ~1909!.
@3# A. Bloch, R. G. Medhurst, and S. D. Pool, Proc. IEE~London!

100, 303 ~1953!.
@4# L. La Paz and G. A. Miller, Proc. IRE31, 214 ~1943!.
@5# C. J. Bouwkamp and N. G. de Bruijn, Philips Res. Rep.1, 135

~1946!.
@6# L. J. Chu, J. Appl. Phys.19, 1163~1948!.
@7# R. F. Harrington, IRE Trans. Antennas Propag.AP-6, 219

~1958!; R. F. Harrington, J. Res. Natl. Bur. Stand., Sect. D64,
1 ~1960!; R. L. Fante, IEEE Trans. Antennas Propag.AP-17,
151 ~1969!; R. M. Kalafus,ibid. AP-17, 729 ~1969!; O. Ein-
arsson, F. B. Sleator, and P. L. E. Uslenghi,ibid. AP-23, 28
~1975!; R. L. Fante,ibid. AP-40, 1586~1992!.

@8# R. C. Hansen, Proc. IEEE69, 170 ~1981!.
@9# J. S. McLean, IEEE Trans. Antennas Propag.AP-44, 672

~1996!.
@10# D. R. Rhodes, IEEE Trans. Antennas Propag.AP-15, 568

~1967!; G. V. Borgiotti, ibid. AP-15, 565~1967!; R. E. Collin,
ibid. AP-15, 567 ~1967!; D. R. Rhodes,ibid. AP-20, 318
~1972!; Synthesis of Planar Aperture Antennas~Oxford Uni-
versity Press, Oxford, 1974!.
@11# D. R. Rhodes, J. Franklin Inst.302, 225 ~1976!.
@12# R. E. Collin and S. Rothschild, Can. J. Phys.41, 1967~1963!;

J. M. Jarem, J. Math. Phys.21, 2847~1980!; 23, 1713~1982!.
@13# R. E. Collin and S. Rothschild, IEEE Trans. Antennas Prop

AP-12, 23 ~1964!; G. Mitsioulis, Can. J. Phys.69, 875~1991!.
@14# L. Solymár, Lectures on Electromagnetic Theory~Oxford Uni-

versity Press, Oxford, 1984!.
@15# R. W. P. King, IEEE Trans. Antennas Propag.AP-37, 178

~1989!.
@16# R. C. Hansen, IEEE Trans. Aerosp. Electron. Syst.26, 345

~1990!; Y. Huang, M. J. Lancaster, T. S. M. Maclean, Z. W
and N. McN. Alford, Physica C180, 267 ~1991!; L. P. Ivris-
simtzis, M. J. Lancaster, T. S. M. Maclean, and N. McN. A
ford, IEEE Trans. Antennas Propag.AP-42, 1419~1994!.

@17# G. Fikioris, Ph.D. thesis, Harvard University, 1993~unpub-
lished!; G. Fikioris, J. Electromagn. Waves Appl.10, 307
~1996!.

@18# V. Veremey and V. P. Shestopalov, Radio Sci.26, 631~1991!.
@19# T. T. Taylor, IRE Trans. Antennas Propag.AP-3, 16 ~1955!.
@20# D. R. Rhodes, IEEE Trans. Antennas Propag.AP-11, 440

~1963!.
@21# W. F. Richards and Y. T. Lo, IEEE Trans. Antennas Prop

AP-23, 165 ~1975!.



n

s

e
re

rre

ul

or

ion

le-
.

c-

-

,

PRE 58 2547HIGHLY DIRECTIVE CURRENT DISTRIBUTIONS: . . .
@22# T. S. Angell, A. Kirsch, and R. E. Kleinman, Proc. IEEE79,
1559 ~1991!.

@23# M. Uzsoky and L. Solyma´r, Acta Phys. Acad. Sci. Hung.6,
185 ~1956!.

@24# Y. T. Lo, S. W. Lee, and Q. H. Lee, Proc. IEEE54, 1033
~1966!; 55, 292~E! ~1967!.

@25# T. S. Angell and R. E. Kleinman, J. Optim. Theory Appl.37,
469 ~1982!; SIAM ~Soc. Ind. Appl. Math.! J. Appl. Math.44,
1246 ~1984!.

@26# A. Kirsch and P. Wilde, Math. Methods Appl. Sci.10, 153
~1988!; T. S. Angell and A. Kirsch,ibid. 15, 647 ~1992!; A.
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