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Highly directive current distributions: General theory
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A theoretical scheme for studying the properties of localized, monochromatic, and highly directive classical
current distributions in two and three dimensions is formulated and analyzed. For continuous current distribu-
tions, it is shown that maximizing the directivify in the far field while constrainin@=N/T, whereN is the
integral of the square of the magnitude of the current densityTaiscoroportional to the total radiated power,
leads to a Fredholm integral equation of the second kind for the optimum current. This equation is a useful
analytical tool for studying currents that produce optimum directivities above the directivity of a uniform
distribution. Various consequences of the present formulation are examined analytically for essentially arbi-
trary geometries of the current-carrying region. In particular, certain properties of the optimum directivity are
derived and differences between the continuous and discrete cases are pointed o -Whethe directivity
tends to infinity monotonically, in accord with Oseen’s “Einstein needle radiation.”

[S1063-651X98)02108-4

PACS numbsg(s): 41.20.Bt, 03.40.Kf

I. INTRODUCTION one sees that a surrounding spherical surface remains a com-
mon device for addressing questions of the above type. Fur-
An old question in classical electromagnetism was: For ahermore, variably define®’s, frequently different from
current-carrying region of given shape and size and for ahu’s, still seem to be the most popular constraining quan-
given operating frequency, what is the maximum directivitytities. Other authors, however, have severely criticized the
obtainable? This question was addressed as early as 1922 fgjlation between suc@’s and bandwidt§10,11]. Investiga-
Oseen1]. Starting with Maxwell’'s equations, he essentially tions with commonly use®’s have pointed out anomalies
showed that an arbitrarily small current-carrying region cangy proposed remedies to such anomali£6—13. In Ref.

give rise to an arbitrarily narrow radiation pattern. Oseen 1], Rhodes calle® “one of the most misused and misun-
termed this theoretical possibility “Einstein needle radia- yerstood concepts in electrical engineering.”

tion,” referring tp a 1909 paper by Einstein on the quantum It has been stresse@ee, for example, Ref$§3,14,19)
nature of radiatiori2]. Some later authors were apparentlythat there is no precise threshold for the directivity that can

not aware of Oseen’s fundamental, yet counterintuitive, rep paineq jn practice and that higher-than-conventional di-

sult. According to Bloch, Medhurst, and Po[8], it was - : . o e
forgotten and rediscovered twice after 1922. In 1943, forrectrvrtles can be obtained without running into severe diffi

example, La Paz and Millef4] claimed to have found a culties. Indeed, recent investigations have focused on
current distribution in a linear radiator that would give maxi- schemes for obtaining large directivities. These include the

mum directivity. Three years later, Bouwkamp and de Bruijnu_Se of high-temperature sup_ercond_uct{)lﬁ] In conven-

[5] demonstrated that La Paz and Miller had made an errofional types of antennas or their feeding structures_, as well as
If one can choose the linear current distribution at will, thereScheme$15,17,18 that utilize the resonant properties of un-
is no finite limit to the directivity of the radiator. conventional types of antennas.

Also during the 1940s, several authors noticed that one The discussions above lead to a third, even more compli-
must pay dearly for very large directivities. A specific secondcated question: How large a directivity can one obtaith-
question is: When the directivity is very large, what is theout paying dearly? Due to the unclear relation betw&gn
price one pays? Perhaps the first author to address this quedglefined in any of the usual wayand the bandwidth when
tion in a systematic manner was CHj. Briefly, Chu intro-  the value of the former is low, it is preferable to address this
duced a quality facto®, which he computed from the field question by methods other than those originating from Chu.
distribution on a spherical surface enclosing an unspecifieth reality, this rather vague question cannot have a simple
radiating system. By analogy with circuit theory, Chu relatedanswer, even from a strictly theoretical point of view. The
his Q to bandwidth but noted that “It is understood that the primary reason is that current distributions cannot be chosen
physical interpretation of) as so computed becomes ratherat will.
vague whenever the value & is low.” Through a study of A fourth, more tractable question is: If one is free to
his Q, Chu concluded that very large directivities lead tochoose the current distribution in a bounded region of given
extremely small bandwidths and extremely low efficienciesshape and size, how large a directivity can one obtain with-
so that very large directivities, though possible in theory, areut paying dearly? Investigation of this question, a task that
impractical. does not seem to have been addressed adequately, is a first

Chu’s ideas have been discussed, extended, and reexastep toward answering the preceding one and naturally calls
ined by many authorf7—9]. From the more recent works, for the formulation of a constrained maximization problem.
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The purpose of the present paper is to discuss a theoreticgineering point of view, is physically attractive. This ex-
framework for examining the fourth question posed abovdreme case needs to be further understood.
and to study analytically the general consequences of this
model. In the case of continuous current distributions, the Il. FORMULATION

constraining quantitL is defined to beN/T, whereN is the _ et .
integral of the square of the magnitude of the current densit)é. Let ‘.J(r't)_ Re{J(r)_e . ; _de‘?“’te a continuous threg-
imensional current distribution in a homogeneous and iso-

andT is proportional to the total radiated power. It is note- tropic spaceJ(r) is assumed to be localized, i.e., to vanish

worthy that, for a three-dimensional line source, this ratioidenticall outside of some bounded regignand to satisfy
becomes identical to Taylor's “supergain rati¢19] when y 9

. . . . the condition
point sources of current are assumed to be isotropic radiators.

The constrainC has been used in various contexts by others L
[20—29, but their approaches or objectives differ from the N=Vg f dr|J(r)|?<eo, (2.9
present ones. The advantages of the employed constraint are g

readily recognized: It is a well-defined quantity, being di- whereV; denotes the volume of regic (V= ; dr) and

rectly obtainable from the currents instead of the fields ong employed for normalization purposes: When the current
the surface of a surrounding sphere, and it is specific to thﬂas a unit magnitude everywhereGn N i.s equal to 1. In

particular radiating system. Furthermore, it leads to a Well'particular, wherg is a curver=r(s) (s is the arc length

posed optimization problem. For most cases of practical in-V denotes its length and E€@.1) is understood as a con-
terest, C measures the efficiency of the radiating system an%itigon on an intearal in one dimension. withr=ds. The
is therefore a natural constraint for the physical problem un- uantity\/N will bg referred to as “the c:Jrrent nornlw "

der investigation. quan ot o .
This paper is organized as follows. Section Il proceeds With the e time dependence suppressed, the ensuing

from Maxwell's equations to state the optimization problemﬁ:ecg'c and magne'slc f|eldﬁ§(r) a';'.d B(r) outsideg satisfy
for both continuous and discrete current distributions. In Sec: ¢ 0MOgeENeoUs Maxwell equations

[l it is shown that the optimum continuous current can be V XE(r)=iwB(r) 2.2
conveniently identified as the solution to a linear integral '
equation of the Fredholm type. In Sec. IV some fundamental VXB(r)=—iwenE(r) 2.3

properties of the optimum directivity as a function of the
constraint are derived as direct consequences of the formuyyhere e and u are the dielectric permittivity and magnetic
lation developed herein. In particular, it is shown that thepermeability, respectively. With the introduction of the fa-

integral equation yields known properties in certain limiting miliar vector and scalar potentiafs and®, the electromag-
cases. Also contained in Sec. IV are properties that, thougRetic field can be expressed as
physically intuitive, have apparently not been quantified in

previous analyses. For all reasonable purposes, the analytical E=iwB-VO, (2.9
properties discussed in this section are independent of the
geometry of the current-carrying region. These consider- B=VXA. (2.5

ations render the present approach distinctly different from ) ) )

rigorous analyses concerned with computational schemes féralculations are carried out in the Lorentz gauge, where
the numerical approximation of optimum solutions to radia- .

tion problems, such as the important work by Angell and V-A=ioped. (2.6
Kleinman[25]. (See also Ref$26,27].) Finally, Appendixes
A-D provide the mathematical framework, along with the
treatments of a few mathematically demanding subtleties an ) ) -
Appendix E describes a few cases where the aforementionetder @ currend parallel to a fixed axis, say;

integral equation can be solved exactly. “~

It is emphasized that, due to the assumption that the cur- J(r) z insideg
rent distribution can be chosen freely, the model studied in J(r)= 0 outsideg. 2.7
Secs. -1V is idealized. For example, no attempt is made
there to enforce any ‘“realizability conditions,” such as __ . .
boundary conditions on three-dimensional current densities! NS choice leads to
This latter point is discussed in Sec. V. In practice, of course, iKjr—r'|
one must specify means to maintain the desired currents. In A(r)=,uf dr’ €
general, this becomes increasingly difficult as the directivity g Amlr—r’|
grows and is beyond the scope of this paper. Nonetheless, a
conjecture regarding the realization of optimum current diswherek= w/c is the wave number and=(eu) 2 is the
tributions in closed loops is attempted in the discussion ofrelocity of light. The electric and magnetic fields are ob-
Sec. V. tained via direct differentiation oA(r), as implied by Eqgs.

As also explained in Sec. V, the present analysis is in{2.5 and(2.3). Of interest is the field in the radiation zone,
tended as a tool for the study of currents that give rise to thelescribed by the leading terms of the asymptotic expansions
Einstein needle radiation. The intricate nature of such curef E(r) andB(r) whenkr=Kk|r|—c. In the spherical coor-
rents, though perhaps not imminently practical from the endinate systemr(, 8, ¢) defined with respect to the axis,

Although any current polarization can be treated straightfor-
\gardly, it best serves the purposes of this analysis to con-

J(r')z, (2.9
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ikr
E(N~—iouw jﬂvglp(F)sin 60, (2.9
eikr . .
B(r)~—iuk 47Trvgz,//(r)sin 0, (2.10
where

~ 1 TN

z//(r)zv—fgdr’\](r’)e'kr'r, r=r . (2.1)
g

Evaluation of the Poynting vectd8=3EXH* (where the
asterisk indicates complex conjugatjgmelds the power flux
w’u

=TS (47_” V2| (r)|%sir?e.

Si(r)= (2.12

The total radiated power is

2

1 .
2 _ ; 2
Pr=g- Cv T, T —4ﬂ_f(47)dﬂ sirf 8| y(r)|?,

(2.13

whered(Q =sin 6 dd d¢ denotes the infinitesimal solid angle

at (6, ¢). Substitutingy(r) from Eq.(2.11) into Eq.(2.13,
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The two-dimensional case results from E2.8) with the
assumption of a current distribution that is invariantzin
Accordingly, the potential associated with a current distribu-
tion J(r) in a two-dimensional regiog reads

A(r)— fdr HP (ke =r"[)3(r'). (2.18

The corresponding scalar field in the radiation zong3@

i(kr—mld)
[ r),
\V8akr v

where r=(x,y) is the two-dimensional position vector,
=(cos¢,sing), and ¥(r) is given by an equation of the
form (2.11). The power fluxS,(r) and the total radiated
power Pt are given by

E(r)~—ouVg (2.19

S(P)= VA (2.20
1 (2= N
Pr="a V2T, Tzﬁfo dle(H|2. (221

T can be recast in the forif2.14 with the real and symmet-

interchanging the order of integration, and performing thefic kernel

dQ) integration result in

T_lfde'J* K a(r’ 2.1
“ e g g @

The associated three-dimensional kerfdsrived in Appen-
dix A) reads

K(r,r')=K®(r,r")

- & kR)
=[1-(z:R)?] n(
~ A sinlkR) cogkR)
—[1—3(Z-R)2] (kR)3 - (kR)Z
. ~ ~ . j1(kR
~[1-(2-Rjo(kR - [1-3(2 R Y
(2.19
where
R=|R|"'R, R=|R|, R=r-r’, (2.16

K(r,r")y=K@(r,r")=K@kR)=Jo(kR), (2.22
whereJ, is the Bessel function of zeroth order.

It is not difficult to modify the foregoing analysis in order
to treat discrete distributions consistingMf electric dipoles
or current filaments of amplitudds; } at fixed positiongr;}

(j=1, , M) in two or three dimensions, respectively.
The square of the current norm is then defined as
M
N=M*1j§=)l||j|2<oo. (2.23
With ¢(r) in Eq. (2.11) being simply replaced by
M ~
w(F)zM*ljZl ek, (2.24

all of the preceding expressions for the far field, the power

flux, and the total radiated power in terms @fr) remain
valid. The discrete analog of E¢R.14) reads

ol (2.29

M M
T= 2 ;lfK(r

and jg,j; denote the spherical Bessel functions of order O

and 1.K®(r,r") is real and symmetric. Wheg lies in a
plane perpendicular ta, K®)(r,r’) reduces to

sinkR) cogkR) sin(kR)
KORI= =R~ RZ ~ (kR"
KR
_Jo(kR)—]l(R). (2.17)

whereK is equal toK® or K(). This equation shows that
the continuous kerneK(r,r’) represents the interference
(cross term in the total power radiated by two parallel cur-
rent elementgdipoles or filamenfsof unit amplitudes, lo-
cated at positions andr’ (r#r').

Finally, let FO be a direction of preference in the two- or
three-dimensional space. For continuous or discrete current
distributions, define the quantities
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D=P/T, P=[y(ro)l?% 2.29 e”‘FO"—)\let(r)—i\Tzfdr’K(r,r’)Jst(r’)=0. (3.3
GJg

C=N/T. (2.27
The preceding equation is preferably recast in the form

With an additional factor of 1—(ry-2)?] in three dimen- ~ o ~ .
sions, D is the directivity inr,. For continuous surface cur- J(r)+ V_f dr/K(r,r")J(r’)=e'"o", 3.9
rents flowing in highly conducting materials or currents in 976
dipoles, C_ measures the efficiency qf the radiating systemynere
becauseN is proportional to the Ohmic losses.
The optimization problem can now be stated as follows. I =NJI(r),  a=\p/Ag. (3.5
Problem Il.1. Given a current-carrying regior; (or
{ri}, i=1, ..., M, in the case of discrete current distri- Alternatively, \, can be set equal to 1 without loss of gen-
butiong andr, (ro#z in three dimensions determine ad- erality. Of course, [ dr’ is interpreted as in Eq2.1).
missible continuous current distributiod§r) =Jo{(r) (or Equation(3.4) is a Fredholm integral equation of the sec-
discrete{ljzlj("p‘)}) that maximizeD[J] (or D[17) for fixed ond I§|nd[31], which, for a fixed frequency, giveXr) as a
&[3]=C (or €[1]=C). func.tl(.)n of a. Thereforg, C enters Eq(3.9 as a parameter
The caret over a capital letter means a functiona ar a Isﬁc:ﬁjl[?(l)tr!y fg]rro;ngh ai'v-ergf i?(%zt'?r};afhgsuen;?rﬂteeagg";;i?ele
function of I=[1;]. “Admissible” distributions are continu- y 9 ' P 9

! = . = I 1 -
ous (or discreté localized currents whose norm exists and isag‘n‘zg?s el’uitio.n. i |ams1|>[anl) satisfying the homo
finite and nonzero. Because multiplication of the current dis9 q

tribution by a constant leave3[J] andC[J] unaltered, this an

problem does not yield a unique optimum current. For the Jm()+ V—f dr'K(r,r')Jm(r')=0, m=1, 2,

appropriate values of, any such optimum current can be 974 (3.6)

viewed as the unique solution to a corresponding problem. '
Problem 11.2. Given a current-carrying regioy (or |t is noted in passing that the eigenfunctiogg, (m

{r}, =1, ..., M) andr, (ro#z in three dimensions =1, 2, ...) do notnecessarily form a complete set; in

determine the admissible continuous current distributiorother words, there can be admissible currents that are or-

Jopr) (or discrete{l{®}) that maximizes the power-flux thogonal to all7,. Such currents do not radiafé2,33, as

functional P[J] (or P[1]) for fixed N[J]=N (or N[1]=N), diS_(IZ_IEJ]SSGdI fl:_rthetr ifEA(F;PAef)ndiX B. " ¢ solvi
[3]=T (or T[11=T), and phase Arg(F). e solution to Eq(3.4) is an optimum current solving

In the case of discrete current distributions, the constrain?mblem -2, l.e.,
has an uppeffinite) bound, as also discussed by kbal. J CoN=T(p-
. ) ra)=Jr;a), 3.
[24], who useC/M as a constraint. This upper bound be- opt F3 ) =J(F; ) S
comes infinite for a continuous current distributid5]. In provided
Appendixes B and C both of these assertions are shown to be
direct consequences of solving Problem II.1. In order to sim- a>—|aql. (3.9

plify the analysis, Problem II.2 is addressed first.
All admissible currents solving Problem II.1 may be ob-

Il EQUATION FOR THE OPTIMUM CURRENT tained \_/ia multiplicatipn ofl by an arbitrary constant. l\_lota-
bly, an integral equation resembling E8.4) has been given
A. Continuous case by Katsenelenbaum and Shalukii8#] in their investigation

For mathematical convenience, an overall phase is chos& two-dimensional current distributions whose far field ap-
for the continuous current distributiord(r) so that proximates a prescribed pattern with a given accuracy. When
Arg 1/1(? )=0, permitting G is the interior of a closed curve in two dimensions, appli-

o) — Y

cation of the LaplaciaV? to both sides of Eq(3.4) shows
that the optimum current satisfies Helmholtz’s equatiog,in

\/ﬁ’[J]=Vif dr J*(r)elkror, 3.0 e,
GJg

Vo1 +K2Jop(1) =0, Tr=(xy) €. (3.9
Following the method of Lagrange, as explained in more
detail in Appendix B, it is expedient to find the stationary A special case of the integral equatit®4) results when
function J=J; for the functional a=0. The familiar current distribution

o = - - Jo()=3(r:a=0)=ekor 3.1
BL31= VPLII- M (R[IT-N) - xo(T[3]-T), (32 ol =J(r;a=0) (319

_ is then trivially obtained. The preceding expression gives a
whereh, and\, are real. With Eqs(2.1), (2.14, and(3.1),  current distribution of uniform magnitude everywheredn
variations of the current rendé[J] stationary atJ=Jg if  which produces the optimum directivity by constructive in-
and only if Jg; satisfies the linear integral equation terference. Such an arrangement of currents is conventional
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for achieving high directivity in a specified direction and is ried out, leading to definite analytical representations for the
herein named “the reference case.” The corresponding coneptimum current. This task is planned for future works.

straint and optimum directivity are The integral equatiofB.4) admits simple, closed-form so-
. lutions in terms of Fourier series in some special cases where
Co=Do=Ty ", (3.11 regiong is circularly symmetric. A few such cases of interest

are examined in Appendix E.
where xami in Appendix

B. Discrete case

Al o~ 1 ~ ~
— — - Y% ’ ’
To=TLI=Jo] V2 L drfg dr’Jo (MKr,r)Jo(r"). The optimization of a discrete current distribution leads to
(3.12 @ system of linear equations, which is the discrete analog of
Eq. (3.4). Without further ado, the optimal amplitudes

~Y2 where(see  {I{°®™  are found to satisfy

It follows that D is always larger thans
also Appendix B

M
o o
|(Opt)+ Mlgl K(r] ’rl)ll(opt):elkrohrj! j:]-! LR | M!

1 i
— - ! ! 2
w=w (k) Véjgdrfgdr [K(r,r")|. (3.13 (3.18

An asymptotic evaluation of this integral fer— is carried  or, in matrix form,
out in Appendix D. In particular, this calculation verifies the
expected result thdd, is unbounded at high frequencies. (1+ aK )1 PV =T, (3.19
For |a|<|a,|, an approximate expression for the opti- M o '
mum current can be formally obtained by the method of — -1 . .
successive approximations, according to the scheme whereKy =M "[K(r;,r)] is a real and symmetrit X M
matrix, 1(°P9=[1{°"] andT,=[€e'k0'"] are M X1 column
3('+1)(r)+ ﬁf dr/K(r’rr)j(l)(r/):eikfor’ vectors, andl is the unithM matrix. This equation was
Vglg derived by Uzsoky and Solymd23]. It admits a unique
solution when— a~ 1 does not coincide with any one of the
=0, 1, ..., (3.149  (positive eigenvalues- £, (m=1, 2, ..., M) of matrix
Kwm» numbered in order of descending magnitude. This so-

- imatioff) i s ; A :
where the zeroth-order approximatidif’ is the reference lution is an optimum current distribution providégee also

currentd,. This procedure yields Appendix B
ID(r)=go(r) — agy(r)+a?g(r) +- - - +(—1)'oz'g|(<3r>1.a a<—|éul or a>—|&. (3.20
where When|a|<| &, Eq.(3.18 is amenable to an approximation
scheme analogous to E.13.
Go(r)=Jo(r), (3.169
1 IV. SOME PROPERTIES OF THE OPTIMUM
9(r) = —f drKi(r,r)Je(r), 1=1, 2, ..., PIRECTIVITY
VoJg A. Continuous case
(3.16hH
The constrainiC may not take arbitrary positive values.
K=K, (3.173 For continuous current distributions,

1 Cla)=|ayl, 4.9
K|(r,r’)=v—f dr"Ky(r,r”) Ki_p(r”,r'),

/6 which is essentially Eq(B13) of Appendix B. This mini-
mum value is attained fal=7;. An expansion of the opti-
mum current in the eigenfunctiong,, (m=1, 2, ...) of
Eqg. (3.6) enables the derivation of a few properties of the
relevant quantitiegsas outlined in Appendix L Specifically,

h=1, 2, ..., 1-1, 1=2,3, .... (3179

For |—o and |a|<|a;|, Eq. (3.19 converges tal. The
radius of convergence of the involved power seriegriis
|a;|, bounded below bys ~Y2. As shown in Appendix D,

the whole spectrurfia,,} moves toward- at high frequen- I'ELC(Q):OO’ (4.29
cies. This in turn implies that the radius of convergence “

above is unbounded i, depending on the frequency and the

geometry ofG in a nontrivial way. At high frequencies, Eqs. dC(“)>0 (4.2b

(3.149—(3.17H become advantageous to employ: For a pre- da ’
scribed geometry of the current-carrying region, an
asymptotic evaluation of(r) (I=1, 2, ...) can becar-  while
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db(@)_, 43 dC(e) o 90_o &D_, 41
da (433 da % ac~% ge=0 41D
lim D(a)=0o, (4.3b In the above,
a—® " A
whereD (a)=D[J]. The limit (4.3 is a consequence of the Xp=M"12 1M gkiori  m=12 ... M,
speculative conditiofC14) introduced in Appendix C. Note =1 4.12

that lettinga— o is equivalent to solving the unconstrained

optimization problem. Withw= a(C), 1™ is the eigenvector oK, corresponding ta&,,, andT}

dD i denotes the transpose lf Note that the maximum optimal
E>O’ lim D (@) =<, (4.4 directivity D,, corresponds to a constraii@, below the
Coe maximum valueC,,,,. D, is the solution to the uncon-
i.e., the optimal directivity is a monotonically increasing Strained optimization problem, as introduced by Uzk8g],
function of the imposed constraint and is unbounded for@nd is produced by an optimum current
large values of the constraint. This result is expected, being
in agreement with Oseen’s Einstein needle radigtignFur-
thermore,

0

1P = constx >, | &mlXm 1™, (4.13
m=1

lim d_DZQ (459 For constraints higher tha@.. , the optimum directivity be-

c. dC comes a monotonicallgecreasingunction of the constraint.
It can be argued that such a behavior is accompanied by the

appearance of an appreciable lobe abeu in the far-field
pattern. Accordingly, the curv® =D (a(C))=D(C) ex-
. o hibits analytic properties different from the case of continu-
demonstrating that the larger the constraint is, the slower thgys currents. For example, in the vicinity of the end point
rate of the directivity increase becomes. The total power rac = c

diated by a normalized optimum current becomes arbitrarily
small asC increases indefinitely. Equatiai2.14) indicates

d?D
— <0,

max»

that such a current varies extremely rapidlyrin

B. Discrete case

Dopt(C):|§M||XM|2+O(Vl_C/Cmax)v (4.14

as proved in Appendix C, and the slope of the curve becomes
infinite there. A similar behavior at the lower endpoiat

In contrast, discrete current distributions are expected tg- Cmin IS @lS0 uncovered in the continuous case. These re-

introduce finite upper limits to the constrai@t=C(«) and
the directivityD =D(«) (as sketched in Appendix)CMore
precisely, for—|&;|<a=a(C),

|§1|:Cmin:C(a_)_|§l|+)

M
S lénlnl?
<C(a)<C,=C(a—»)=— . (4.6
2 &l Xal®
&4 [X1]*=D(a——]&]")
<D(a)=D,=D(a—»),
M
D= 2 [éml|Xal=T5 Ky" To,
(4.7
dC(a) dD d?D
da >0, E>o, W<O' (4.8
while for a< —|&yl,
C.<C(a)<C(a——[éu| ) =Crac=léul, (4.9

|ém| [Xm|?=D(a— —|éu|")<D(a)<D.., (4.10

sults indicate that the analytic continuation®f,(C) from
Ac=[Cin Cmaxl to complex values o€ encounters at least
two branch points a€=C,,;;, andC=C,,«. In the first Rie-
mann sheetD,(C e Ac) is the optimum directivity. Encir-
cling the pointC= C,,,, 0nce results in entering an adjacent
Riemann sheet, whe,,(C e Ac) is presumably a mini-
mum or a saddle point.

A close examination of the spectrum K, verifies that
high optimum directivities are favored by larg# and elec-
trically small spacing$r; —r;| (i#]). Of primary interest are
optimum currents that produce directivities moderately
larger than the reference vali®, with the corresponding
constraints only slightly abov€,. This calls for studying
Eqg. (3.4) in specific geometries of the current-carrying re-
gion G for positive values ofa that validate expansion
(3.15. Similar considerations hold in regard to E§.19.

V. DISCUSSION

The foregoing analysis admits several generalizations, but
also points to certain open questions. In particular, note the
following.

(i) If the polarization of the continuous current distribu-
tion J(r) is also free to vary, optimization of the current
vector yields essentially two independent linear integral
equations: one for the component parallet §and one for a
component normal t@,. The former equation is homoge-
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neous and has only the zero solutidar «>0), while the originating from methods that deal with the fields on a sur-
latter is Eq.(3.4). This situation is totally different when the rounding sphere by leaving the radiating structure unspeci-
maximized quantity is the power radiated through a solidfied.

angle(say, centered aty). (vii) In addition to obtaining bounds for the aforemen-
(i) When G consists of My disjoint regions tioned structures, it is of interest to compare the optimum

G, G, Owm (GNG=0 for any i#j; currents obtained from the present formulation to the current
v G2, o Omy ;

distributions in resonant closed loofks7]. Are these similar

(at least for some ranges @f and for some frequencies and
shapey to one another? If the answer to this question is
proved to be positive, it may be possible to excite the opti-
mum currents in noncircular closed loops. These consider-
ations call for a study of optimum, continuous current distri-
butions in closed loops.

(viii) The present approach provides a suitable analytical
tool for studying highly directive continuous currents 's
above theC, of the uniform distribution. For electrically
large structures, a challenging task is to describe approxi-
mately such currents uniformly inOa<<e. This investiga-
tion may shed light on the conditions under which the Ein-

i,j=1, 2, ..., My), then Eq.(3.4) reads

Jny+ =
(r)v—g

My
f dr/K(r,r")3(r')+ >, dr’K(r,r’)j(r’)]
Gi =1 Jg

G#i)

—elkior, reg. (5.1

(iii ) An important variant of Problem II.1 is the following.
Problem V.1.Given a current-carrying regiog (or rj,

j=1, ..., M, in the discrete cag@ndro, determine ad-  stein needle radiation becomes a theoretical possibility. In
missible continuous current distribution§r) =Jop(r) (or  this case, the currents are, in general, rapidly varying func-
discrete {1;=1{°"}) that maximize D[J] (or D[1]) for tions ofr in regiong.

C[J]=<C (or C[1]=<C). (ix) Though not mathematically compelling, it seems

According to Sec. IV, this problem is equivalent to Prob- Physically reasonable to presume that E@s4)—(4.5b im-
lem 11.1 for continuous current distributions and apgrmis-  Ply a nearly logarithmic dependence of the optimDigy(C)
sible) C=|ay|. In contrast, such an equivalence is ensured®n C, when the latter approaches infinity. Intuitively, it is
for discrete currents only whe6<C,,. For C>C,, the expected that the leading asymptotic behavioDgf{(C) as
solution to Problem V.1 is always given by B¢.13, asthe C— is universal in two dimensions, being inherent to
solution to the unconstrained optimization problem. some “wide” class of current-carrying regior& This be-

(iv) With the norm defined by Eq.(2.1), three- havior is in turn determined by the leading asymptotic form
dimensional volume currents that maximiBe= P/T under  Of |ay| asm—c and calls for an investigation of the homo-
fixed C=N/T are discontinuous across the bound&gof  geneous integral equation for large These considerations
regiong. Conservation of charge demands that the discontican possibly be extended to three-dimensional planar re-
nuity in their component normal t6; be accompanied by gions, withrg lying in the plane ofg.
surface charge distributed ofi;. A moment's reflection (x) The solution to Eq(3.4) can be given in a simple
leads to the idea that this possibility could be eliminatedclosed form in the case of the two-dimensional circular cur-
mathematically by solving a similar optimization problem in rent distribution. Although the circle does not naturally lend
some subspace of all currents satisfying E21); for in- itself to establishing highly directive fields and the conjec-
stanceN could be redefined by properly adding squares ofture attempted irfvii) above does not hold in this case, it is
space derivatives of current density components under thdesirable to study the circular closed loop first in detail.
integral sign. Such a modification would result in an integro-
differential equation for an optimum current density of fixed
polarization, which, if supplemented with the appropriate
boundary condition, can furnish a solution continuous across Starting with Maxwell's equations, the present work de-
Sg. Formulation of a physically reasonable problem of thisvelops a self-contained theory of optimally directive currents
type is left as an open question for future work. in two and three dimensions and studies analytically some of

(v) Issues related to bandwidth are also left as open queshe physical implications. More precisely, maximization of
tions: It is difficult (if not impossible to make quantitative the directivity in the far field of an idealized radiating sys-
statements about bandwidths of current-carrying regiongem, under the constraint of a fixed ratio of the current norm
with directivities not much larger thaB,. To make such squared over the total radiated power, is shown to lead to a
statements, one must first specify the method of excifoimg linear integral equation for the optimum continuous current.
approximating the idealized current distribution. In this equation, the dependence on the constraint enters im-

(vi) The properties of current-carrying regions with direc- plicitly through the Lagrange multiplierr. This integral
tivities larger thanD, are frequency dependent. Previousequation is recognized as a tool for studying analytically
studies of highly directive radiating systems have tended teurrents that produce directivities larger than the uniform
focus on electrically small structur¢8]. As evidenced by distribution (reference cagewherea assumes positive val-
recent studies of electrically large, resonant, closed-loop anies. One range of that is of interest involves small in-
tennas[15,17,36, electrically large structures are particu- creases in directivity above the reference case. The optimum
larly interesting. The formulation developed here is espe<current may then be calculated by use of iteration on the
cially suitable for finding bounds on the radiating efficienciesintegral equation. Another range of physical interest corre-
of such structures. These bounds are sharper than boundgonds to the extreme case in whiehapproaches infinity

VI. CONCLUSIONS
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and currents reversing rapidly in space give rise to the Ein- 1 (2= w
stein needle radiation. K®(ry,rp)= Ef d)’f dg sin g
A close examination of Eq43.4) and(3.19 for the op- 0 0
timum continuous and discrete currents reveals that the gen- X[1-sirfy sirf8 cogy—cosy cosp

eral properties of the optimum directivity, currents, and
fields are related to the eigenvalues and eigenfunctions of the
corresponding kernel or matrix, respectively. For discrete 1
currents, the number of the eigenvalues is finite, resulting in =2
a (finite) maximum directivity for a constrairémaller than

—sin 2y sin B cos B cos y]ekRcosh

1 :
(2—sirfy) f_ldg elkRe

its maximum(finite) value. When the constraint approaches 1 ,
its maximum value, the slope of the optimum directivity ex- +(sinfy—2 COS‘?X)f d¢ g2eRé
hibits a singular behavior as a function of the constraint. For -
continuous currents, the eigenvalues become infinite in num- ., Sin(kR)

ber and the optimum directivity tends to infinity monotoni- =sir’x KR

cally, with an ultimately decreasing rate of increase.

The present formulation is applicable to any sizedof
However, it is more advantageous for the study of the inter-
esting case of electrically large structures: First, they allow
for simplifying approximations in the derived equations,
such as the iteration schem®8.14. This is because the \ynich is Eq.(2.15.
wavelength is small compared to the maximum linear dimen- |, +wo dimensions, the corresponding integral reads
sion of G and asymptotic methods become effective, as im-
plied by the analysis of Appendix D. Second, they may pro- 1 (2= _
vide a link to other recent studies and experimelitg], K(z)(rlirZ):EJ dy elkRcosy, (A3)
illuminating the difficult problem of realization of currents. 0
We plan to apply the theoretical framework discussed here %his is easily identified with Eq2.22.
electrically large systems in future works.

+(1—3 cogy)

(kR?*  (kR)®

cogkR) sin(kR)}

(A2)
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APPENDIX A: EVALUATION OF K(r,r")

1
An integral expression for the three-dimensional kernel J(r)+ aKqJ(r)=0, KopJ(r)E\TJ dr’'K(r,r")J(r"),
entering Eq.(2.14) reads GJg -

are orthogonal, corresponding to real eigenvalagsnum-

K(3)(r1,r2)=if dQ sin?eel R, bered in order of ascending magnitudgyf|—o for m
A ) (4m) — ), with eigenvalues of multiplicity>1 being repeateti
R=r,—T,, [r1,/2€G, (A1) times. Thea,, are negative becau§'¢J]>O for any admis-

sible currentd, dictating thatK(r,r’) is a positive kernel.
The set{ 7.} is not necessarily complef81]. It is noted in
where integration is understood ovefr = (xy.), andgis (oISl SO B LR B e
the angle betweem andr. Let (x',y’,2") be a rotated Car- gecomposition
tesian coordinate system such taatR andx’ is coplanar
with z and R. Let y denote the angle betweeR and z K(r.r)= i TN Tm(r")

(z-R=cosy). With the introduction of the spherical coordi- =1 |aml
nate systemr(3,y) associated with the primed system by
convention, Eq(A1) is cast in the form entails the rather simple formula

(B2)
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o

E 1 1 d 2/3 in three dimensions
=1 e _V_gfg rKnn= 1  in two dimensions.
(B3)
In the Dirac notation
1 *
<g.h>=v—fdr g*(Nh(r), (B84)
GJg

the normalization of7;, so tha 7, Jm/) = Smny @nd the use

of Eq. (B1) give a formal representation for the solutidmof
Eq. (3.4):

I <Tor—a S, A s
(r)=Jo(r) amzlmmjm(r). (B5)
In the above,
An=(Tndo)r 2 |AdP=1, Jo(r)=elior.
m=1
(B6)

A close examination of Eq(3.4) reveals thati(r) is a
smooth function ofr, wherer lies inside regiong (r e G).
This is also true for eacly,(r). If G is a curve, differentia-
tion is understood with respect to the arc lengthSeries
(B5) converges uniformly ime G.

For the purpose of showing that E(@5) indeed maxi-

mizesP[J], { T} 1 is complemented with an orthonormal

set{ﬁp}tzl, whereL can possibly be infinitel(— ), so
that their union forms a complete set and
<«7ma:7p>zo, m:]., 2, ey

p=1, 2, ., L

(B7)

Then any admissible current distributial{r) can be ex-
panded in a Fourier-type series

L

I0)= 2 andu(n)+ 2 bpp, (B9)
m= p=
where
am=(TmJ), m=1, 2, 3, ..., (B9)
b,=(7.J), p=1,2, ..., L. (B10)
It follows that
) L
NI=Q.9)= 2 fanl®+ 2 [bpl% (BLY
< o lap/?
TLI]=(3,Kopd)= mE:l Tau]" (B12)
Consequently,
TLII<|ay|™t if (3,3)=1, (B13)
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which implies that|a;| is the minimum value of the con-

straintC[ J], attained with the normalized curreh 7;. By
use of Eq.(B1),

1 1
- — ’ r\|2
|al|2<w(k), @ (K) Véfgdrfgdr [K(r,r")|=.
(B14)

In the space orthogonal t@;, ..., Jn_1, Similar consid-
erations hold for each of the other eigenvalugs (m=2).
In particular,
1 .
<JﬁvKopjﬁ>:'__Tv hﬁ1<Jﬁ,Kopjﬁ>=4l (B15)
m m— oo

|

suggesting tha€[J] does not have &inite) upper bound.
According to Eq.(B12), if currents:7p exist, they do not
radiate. Due to the analyticity of the electromagnetic field in
free space, it is concluded that the field produced by é,@ch
vanishes identically outside ¢f [37]. Hence
<joy:7p>:0’ p=1, 2,

. L. (B16)

In the case of two-dimensional current distributions, it is of
some interest to note that when regigns a closed loop, a
single “nonradiating” current7; exists L=1) only at the
discrete spectrum of frequencies that solve the internal Di-
richlet problem. No such current existgifis an open curve.
Wheng is the interior of a closed Iooﬁjp} is always infi-
nite, as is illustrated for the circular disk in Appendix E.

Accordingly, the scalar field zfto is given by

[

W[I]= D anAk.

m=1

(B17)

Without loss of generality,A,,, are assumed to be real(
—AL).

Since N[J] and T[J] are independent of the phases
Arg a, and Arg b,, the latter can be freely chosen to
maximize|W[J]|= VP[J]. A necessary condition for maxi-
mum real¥[J] is

a,An=0, m=1, 2, 3, ..., (B18)

while it is mathematically convenient to takg to be real
(bp=b;). The task is thus assigned to apply the method of
Lagrange multipliers in order to maximize the real functional

oo

W[ {am} {bpH = ¥(ro) = 21 amAm,

m=

(B19)

by keepingN[J]=N and T[J]=T fixed. For finite sets
{amh, and{bp}gil (n,<L), n=n;+n,, and sufficiently
large n4, Egs. (B11) and (B12) together define a smooth
n—2 manifold M,,_, as the intersection of an—1 sphere
with ann—1 ellipsoid(for n,=0), or ann—1 cylinder (for
n,=1). The geometry is easily visualized far=3, where
M, _»,=M, consists of two smooth closed curves. Since
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any linear function can be described as a set of parallel hyEquations(B3) and (B6) ensure absolute and uniform-in-
perplanes, maximization or minimization iM,,_, of the  convergence of EqgB24) and (B26)—(B29) for any finite
function complexa# a, (m=1, 2, 3, ...) and inside regiong.
Let I denote any finite closed contour in the complex
_ plane not enclosing or passing through any of the paints
W@, ... ’anl’bl’ T ’b”z)_mzzl amAn  (B20) Integration of(B24) alongI" yields

ny

occurs at points where the corresponding hyperplanes are
tangent taM,,_,. Clearly, the method of Lagrange multipli- fﬁ da Jopdr; )= 2 AmTm(r) § 1T /|a | =0.
ers yields all desired maxima or minima ¥f, . By relaxing m (B30)

the requirements of mathematical rigor, these considerations
can be extended to infinite (n—<). Accordingly, the op-
ti][num amplitudes{a'eP?} and {b{*™} are stationary points
0

Hence Jop(r; @) is a meromorphic function ok for fixed r
inside G, with simple poles av=«a,, (Mm=1, 2, 3, ...).
Similarly, P(a), N(«), andT(«) are meromorphic func-
E[J]=W¥[3]- vy (N[I]-N) tions of , with double poles atr= a,.
1 By virtue of the binomial expansion

—vy(T[I]-T), for vy,v, real. (B21)

a —Q_i (-1'(1+g-D!f a |
The first variation ofF[J] vanishes when T legl] &b I (q—1! \|ay|
2vy(1+ vl ap))agP =An,  204|b® =0, v=wv,/v;. for g aninteger>0, (B31)

(B22)

- o . ) which is valid for|a|<|a,|, power series inx of all opti-
W is evidently maximized only when, is non-negative and  ym quantities can be derived. Far|<|a|, the optimum
v>—lay]. In the spirit of Sec. Ill, v, is set equal to 1/2, ¢yrrent is expanded as

leading to
A CoN— S [y
(opy___"™m Joot M @)= —1)a'g(r), B32
e e (823) on(ri) =2, (=1)'a'gi(r) (
Equation(B5) is then recovered witla= v: where
Jopr ———JIm(r B24 - _
optl 1) = 2 1+a/| |jm() (B24) g|(r)=mE:1 Anlam ~'Tn(r), 1=0, 1, 2, ...,

Therefore, fora>—|a;|, the unique admissible solution to (B33)
the integral equatiofB.4) is an optimum current distribution. o

A close examination of EqB22) reveals that the method diven in integral form(for [=1) by Eq.(3.16b.
of Lagrange multipliers furnishes a maximum only fer

—|a4]. In particular, fora— —|a,|*, 2. Discrete case
Cla)—|ay|*. (B25) Given the eigenvaluekt,,| * and eigenvector$™ (m
=1, 2, ..., M) of the real, symmetric, and positive defi-

For C=|a,|, direct use of the definition for the constra@t  nite matrixK,, of Eq. (3.19 in the M-dimensional vector
gives a current proportional to the eigenfuncti@i(r). The  space, along with the definitiq@.12), the foregoing analysis
limit a— o is equivalent to taking; =0 ab initio; therefore,  for continuous current distributions can be basically applied
it gives the solution to the unconstrained optimization prob+o discrete distributions. Heuristically speaking, the major

lem. replacements are
By virtue of Egs.(B11), (B12), and(B19),

1 M - M
S 2 2 —|d ,—>M71 , cCs .M: ,
P<a>=ﬁ>[3]=( > 1 A ) (B26) vgfg r 2 regelntn 2 - 2(

1+ al|ay) B34)
P |Am|? and
MO & G atagy B2
jm(l’)—>||(m), Arn—Xm, am—én
U |Am|?
@=T01= 2 o T alay? (B2 (I,m=1, 2, ..., M). (B39

C(a)=N(a)/T(a), D(a)=P(a)/T(a). (B29  Two points need to be emphasized here.
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(i) Since the spectrum oKy, is finite, the permissible
range ofv=a in an equation analogous to E@22) now
extends to £, —|&y|) and the corresponding, becomes
negative.
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e

Application of the Cauchy-Buniakowsky-Schwarz inequality

o0

1 A
=1 e (1+al|ap))®

(i) 1™ always form a complete set. Therefore, the con-3g] to the right-hand side of the preceding equation results

cept of nonradiating currents does not apply.

APPENDIX C: PROPERTIES OF THE OPTIMUM
QUANTITIES

In this appendix, some general properties of the quantities

involved in the optimization problem are derived.

1. Continuous case

It is shown thatC(a) does not have dfinite) upper
bound. For any fixed\>1 and any positive<1, there ex-
ists anmy=mgy(A)>1 such that

|am|>A, m>mg, (Cy

while
< 1 |Anl?
m=1 |am| (1+a/|am|)2

. (2

provideda= «a(€) is sufficiently large. Consequently,

o

|Anl?

m=mg+1 (1+a/|am|)2
C(a)=A = B
|Anl

e+ L
m=mg+1 (l+a/|am|)

(C3

Sincee can be chosen arbitrarily small, E@t.2a follows.

From Eqgs.(B26)—(B28) it is inferred thatP(«), N(a),
andT(«) are monotonically decreasing functions @f Ob-
viously,

VP(a)—N(a)=aT(a), (C4a
[VP(a)]'=—T(a), (C4b

where the prime denotes differentiation with respecitdt

in EQ. (4.2b. The derivative of the optimum directivity sat-
isfies

P
D' (a)=— (;‘;‘j[—znaﬁ— P T ()]
= JP(a) C'(a), (€7

which gives Egs.(4.33 and (4.59. Differentiation of
D’'(a)/C'(«a) above with respect t€(«) yields Eq.(4.5b).

Equation(C7) implies that, fora— o, D(«) is either un-
bounded D— «) or approaches a finite upper bound mono-
tonically (as is seen to be true for the discrete ¢ag®r
sketching an argument in favor of the former possibility, let
v(a)=P(a) Y2 Equation(C4b) along with the definition
of D(«) produce a trivial first-order differential equation for
v(a), namely,

v'(a)—-D(a) =0, v(0)=1, (C8)
leading to
L[
JP(a) - fo D(§)’ ©9

It is immediately inferred that if IinQHxD(a):const, then
a+/P(a) should be bounded fow— <. In view of the in-

equalities
11X -
P E |a’m||Am|2<a \/P(a’)<2 |a'm||Am|21
m=1 m=1
(C10
where
|am|>a for m>my=my(a),

|am|<a otherwise, (C1y

is of some interest to note that by inspection of these equax+/P is bounded if and only if the serieS;,_,|ap||Ay|?

tions the optimum scalar field at Fo equals

- 1(e
l//(fo;a)=VP(a)=;JO dé N(§), (CH

i.e., it is the mean value dfi(a) over the “past” positive
Lagrange multipliersx. After some straightforward algebra,
L[ZT(oz)ZJr VP(a)T'(a)]
T(a)?
_ 2 (< AP

T(a)zl m=1 1+ a/|am|

o 1 |Anl?
m=1 |a'm|2 (1+a/|am|)3

C'(a)=—

X

converges. Let

“ 1 S,
(,//m(r)z—f drie”™® " 7. (r"), m=1, 2,
Vglg
(C12
Evidently, (r) is smooth inr, expressing the far-field

pattern of the “eigencurrent’J,(r). The left-hand side of
Eq. (B15) yields

1 -1 - N2 " ]2
m:QO fdQ K(r)|¢’m(r)| :K(rm)|¢m(rm)| )
m
(C13
wheredQ =sin 6d6de, «(r)=sint6, andQy=4 in three

dimensions andd{)=d¢, K(F)=1, and Qy=27 in two
dimensions. The introduction of the reasonable condition
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| Um(Fm)|?=O(¢m(To)|?)  for m—oe,  (C14)
at least for an infinite subsequence{af=1, 2, ...}, en-
tails
1 2
7 <O(|An[?). (C15
a’m|

The preceding condition is sufficient for the divergence of
the seriesS;._,|an||An|% contradicts the assumption of a

boundedaP(«), and therefore ensures E@.3b. An in-

vestigation in mathematical rigor of the generality of Eq.

(C14 or (C1H is beyond the scope of this paper.

2. Discrete case

Replacement$B34) and (B35) suggest that the limiting
values of C(a) and D(a) for a—o are finite. When
a>—|&|, Egs.(C4—(C7) and their direct consequences re-
main valid and Eqgs(B26)—(B29), once modified, readily

furnish Eqs.(4.6)—(4.8). For a< —|&y|, the replacement

P(a)— —VP(a)

in Egs.(C4), (C6), and(C7) yields Egs.(4.9—-(4.11).
In order to derive Eq(4.14), let a=—e—|&y|. For e

~>0+,

(C16)

(@)= Xl leul? €2+ 2] S, X
()= 1Xulléml" € ulléml 2 e e —1 €
+0(1), (C17

M—-1 |X |2

_ 2 2 -2 m

N(@)=[Xul?éul* € 2+ 2 rerre =32+ 0(e), )
(C18

v 2 L1 | Xl
T(a)=|Xul?|ém] € “+ =T 5+ 0(e).

m=1 |§m| (|§M|/|§m|_1)

(C19
Equations(C18) and(C19 combined give
[ Xullém] —
€= rvM—1 2 72 V1—C/|éwl
> Xl
m=1 [éml/[éml —1
+0((1—Cl|&u))®D. (C20
By use of Eq.(C17) anda=a(C),
Dopt(c) - Dopt( Cr;lax)
< Xl
m=1 |§M|/|fm|_1
:2|§M| |XM| M—1 X |2 2 Vl_C/|§M|
m
m=1 |§M|/|§m|_1}
+0O(1—C/|éul)- (C2)
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In the first Riemann sheet, the positive square root is taken
when C lies in Ac=[|&],|éu|]. Analytic continuation of
Dop{ C) to an adjacent sheet via crossing the branch cut that
emanates fronC=|&y| yields valuesD,,(CeA¢) below
the optimum directivity. Therefore, the monotonically de-
creasing part of the optimum cuni2,,(C), with a local
maximum atC=C,,, is continued to a monotonically in-
creasing curve below ,p(Cya) -

It is of some interest to examine briefly the form of the
optimum distributionl °® whenkr; =k|r;—r|>1 for all |
#l (j,I=1, 2, ..., M; Mis fixed; r>rj in the radia-
tion zong. The off-diagonal elements &, then become
O((krj,)‘l). It is therefore concluded that form

=1, 2, ., M,
3M/2 inthree dimensions
[éml~1 M in two dimensions. (€22
The optimum distribution normalized to unity is
1P T, (C23

i.e., it approaches the uniform distribution. It follows that

3M/2
C(a)ND(a)N{ M

in three dimensions
in two dimensions. (C24

These results corroborate the findings of efcal. [24], with
their Q being equal taC/M.

APPENDIX D: AN ASYMPTOTIC EVALUATION OF (k)
The integral

ﬁy(k):\/iéjger'gdr’|K(r,r')|2 (D1)

gives a conservative estimate for the radius of convergence
R,=|a,| of the Neumann serig8.15 for | —c. More pre-
cisely,
R,=w(k) 2 (D2)

More accurate estimates involve repeated integrals of
K(r,r') [31]. In this appendix, w (k) is studied systemati-
cally to leading order irk ! at high frequenciesk(— =) by
use of the Mellin transform techniqu&9]. Roughly speak-
ing, “high frequencies” here means that the wavelength is
much shorter than the maximum linear dimension of region
G. The analysis can be extended to higher ordets ih but
the calculations become more elaborate.

Let h(t) be an integrable function defined on<@<<o.
The Mellin transform pair is given by

h(¢)= J:dt tth(t), (D3)

h(t)=2i7ﬂf::dgtg‘lﬁ(§), c real, (D4)
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where the integration path lies in the region of thelane
that ensures convergence of EB3). For the present pur-
pose, consider the example

[tq‘l(ln )" ift=1

h(t)= ifo<t<1, (DS)

whereq is real andn is an integer. Its Mellin transform is
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and Re {>q is the region of integration for which E4D3)
makes sense. This example indicates that terms of the form
t9(In t)" in the asymptotic series of a complicatb(t) for

t—o can be found from the behavior b{ {) near its poles
lying to the left of the region for which EqD4) is mean-
ingful. This task, involving only power dependences in the
vicinities of isolated points, is easier to carry out than dealing
with logarithms int directly.

For the three-dimensional kernel, the Mellin transform of

— '(n+1) w (k) reads[40]
h()=——77 (D6)
({—q)"*t
[(1+9) r( )
5(3)(4):%21 ; , 32 fdrjdr [1- (z R)Z]ZR 1+¢
F(HE r( S|V
r(3+g)r<ﬂ>
2 1 A 1
+E2—g ( it (7+§ ?jgdrfgdr’[l—S(z-R)Z]zR 1+
r2+3| I|——| 9
2 2
_ [(2+9) r( g) 1J f
_ T 5 = | dr | dr'[1-(zR)?[1-3(z- R)}R 1%, (D7)
4 F#)F%Lg r1+§ Velo Je

Note that the multiplicative factors of thé functions have
simple poles at all positive odd integers and/at—1,— 3,

—5. Fork—o, only the negative poles are taken into ac-
count. Three cases need to be distinguished for the spatial

integrals.

(i) If G is the interior of a closed surface, then all of the

above integrals exhibit a pole §&= —2. The inversion for-

mula (D4) requires—1<Re ¢<1. In the neighborhood of

the nearest left pole dt=—1,

@’“m—mf fd’

By use of the paifD5) and (D6), for k— o,

[1-(z R (z-R)?)?
(3) ~_
(k) f J (kR)2 (b9)

R)2]2
R . (D8

SO~ 5 jdr [3+2(2 7+3(2 ")

for (——1, (D10
where# =7 (r) is a unit vector normal t@; at pointr. By
virtue of Eq.(D5), for k—oo,

m(3)(k)~ z In k

8 k2v,

1 .- " n
3+ V—ngdr [2(z- p)?+3(z- p)*]t.
(D11)

Note the appearance of the logarithmkinWheng lies en-
tirely in the xy plane, this leading term simplifies to

(D12

It is noted in passing that this result may also be obtained via

approximation ol ®)(r,r") in Eq. (D1) by its leading term
[1-(z-R)?][sinkR/kR] whenkR>1.

(i) If G is a sufficiently smooth surface, all spatial inte-
grals have a simple pole dt=—1. In order to single this

out, the inner integration is performed in the vicinity iof

=r by use of a local tangent-normal system of axes, leading

to

(i) If Gis a curver=r(s) (s is the arc length, &s
<V,), all integrals exhibit a simple pole §t=0. After some
straightforward algebra,

T 1

1 (Vg A n A
w®(k)~ 1_5k_\/g[ 7- V_gfo ds[2(z-u)?—3(z-u)*]},

(D13
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wherelu=u(s)=|dr/ds| ! (dr/ds) is a unit vector tangent and use of the formulas
to the curve at point=r(s). Wheng lies in thexy plane,

the leading term above reduces to - i _
§ . e|ka sin z,b:nz Jn(ka)e'”‘/’, (E3)
o =—m
@ k)~ 15 k. KVg' (D14
A similar analysis can be applied in two dimensions, ol 2ka sin ) 2 J(ka)2e mr g
where the Mellin transform ofs (k) is [40] m=—c
(E4
{
— Ho == 1 ield d led ti for th fficie
5 @()=2- fdrf dr'R-1+¢ yield decoupled equations for the coefficiefts
1+§)
2 ‘s ~ dnka) 3
(D15) n= n(a)——zHaJn(ka) , N=—o0, ..., o
The multiplicative factor of thel’ functions contributes (E9
simple poles at all negative even integers{at0, and at all _ _
positive odd integers. The inversion path is initially restrictedThe square of the optimum current norm is
in 0<Re ¢<1. Two cases need to be considered.
(i) When g is the interior of a closed curve, the spatial o = (ka)?
integral is analytic at=0. Accordingly, = = 2_ -
g ytic ag gly N=N(a) n;w £, n;x (17 a3 (ke T (E6)
Ho~ ;? drf dr'iR (D16) The optimum scalar field equals
In analogy with Eq.(D9), this result can be verified by re- . 1 (2n _ ,
placingK @ (r,r')=J,(kR) in Eq. (D1) by the leading term J(ra)= 2—] do'j(¢';a)e kacose—¢")
J2/(7kR) cos kR—m/4) whenkR>1. mJo
(i) If Gis a curve, spatial integration reveals-0 as a % ’
double pole ofw(?)(¢), leading to = > i " J(ka)e"?
n=—x
21Ink %
T (K)~ = —. (D17) Jn(ka)?
kV, - _ I\ in(¢—/2)
T 0o 1+ ady(ka) ™ ' €D
APPENDIX E: A FEW EXACTLY SOLUBLE CASES OF R
THE INTEGRAL EQUATION FOR THE OPTIMUM wherer =(cos¢,sin ¢). The total radiated power equals
CURRENT
In this appendix, the integral equati¢8.4) is solved ex- 1 (2= A 12 - ) )
actly in some simple cases where regi@ras a rotational T(a)= Efo do|y(r;a)l ZHZ_ [fnl“Jn(ka)
symmetry. This is achieved by Fourier expanding in the as-
sociated angular variablg. * Jn(ka)?
(E9)

T [t ady (k)
1. Circular loop in two dimensions
In two dimensions, consider a circle of radiasentered Compare with Ref[34].
at the origin. For definiteness, leg be parallel to the posi-
tive y axis, in the directionp= 7/2 of the associated polar

coordinate systemr(¢). With I(r)=j(¢) [j(#) periodid,
Eq. (3.4) reads

2. Circular disk in two dimensions

With J(r)=j(r,$) (O<r=a), the integral equation reads

2ka sin—_2 ) j(¢p")=gkasine,

. o 27 ,
()4 5= Tao's,

. o 2 a
(E1) J(r,¢)+ﬁfo do¢ jodr r
Substitution into this equation of X Jo(K\rZ+ 1 2=2rr 'cod — ') )i (r', ')

- : — aikr sing
i(#)= 2 fre (=) e (E9
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Let

i(rg)= 2 fo(r)e?. (E10

By invoking the addition formula

)

Jo(kyr2+r'2=2rr'cost )= 2, Jn(kr)d(kr')em,
m=—o

(E1D
it is found by inspection that th&,(r) satisfy
2c (@
fn(r)=[1—¥f dr’ r'fa(r")Ja(kr’) |3, (Kkr),
0
n=—o, ..., ® (E12

This dependence on is expected becausgr,®) should

comply with Eqg. (3.9. The direct substitution off,(r)
=N,Jn(kr) into Eq.(E12) furnishes

An= (E13

2a (@ ™ 72_1
1+ Ez—fodr r’'Jn(kr”) .

The remaining integration can be carried out explicitly by

noticing that

2002=2 Lo, 007- J
X3n()?=5 X302 I 10301001}
(E14)
Finally,
R Jn(kr)
i) 2 T k]
xene (E15

whereJ, (x)2—J,.1(X)J,,—1(x)>0 for all realx. It follows
that

o0

2_
N(a)= E Jn(ka) ‘]n+l(ka)Jn—1(ka)

no {1+ o[ p(ka)2—Jp 1 (ka)d,_y(ka)]}2’
(E16)
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~ 1 2w a el '
lﬂ(r;a'): J dd)/J dr’r’j(r’,cﬁ’;a)e_'kr cos(p—¢")
ma” Jo 0

[}

_ \]n(ka)z_'-]nJrl(ka)\]nfl(ka)
0 14 a[Jn(ka)2—Jpy 1 (ka)d,_1(Ka) ]

% @in(¢—/2)

(E17)

- [Jn(ka)?=Jns1(ka)J,_1(ka)]?
T(a)= :
(@ nzz—w~{1+oz[Jn(ka)z—Jnﬂ(kal)Jnfl(ka)]}2

(E18

Alternatively, by a comparison of EQE11) to Eq. (B2),
all of the above final formulas for the circle or disk can be
easily reproduced through the formulation of Appendix B.
For instance, it is recognized that the set of eigenvalues

{am}7_, for the disk is identified with ay}ir_ o, Where

ap=—[Jn(ka)®=Jni1(ka)d_y(ka)] "%, n=0, 1,

(E19
each eigenvalue far#0 being doubly degenerate, with cor-
responding eigenfunctiond,(kr) e*"¢. This set is not
complete; an infinite set of linearly independent functions
orthogonal to each eigenfunction can be constructed, for in-
stance, from the basis {Jn(knypr)ei'”‘ﬁ; n

=0, 1, .y p=1, 2,...}, wherek ;a, k,a, ... are

the positive zeros ofl|(x) arranged in ascending order of
magnitude. The underlying reason for this lack of complete-
ness is the description of the current by two independent
space variables, as opposed to the far-field dependence on
one space variable. Note that kf coincides withk , for
somel andp, thene''® becomes a nonradiating current for
the circular loop of radius. (See also Ref33].)

3. Circular loop in three dimensions
Consider a loop of radiua centered at the origin. With
the current polarizationzj chosen to be perpendicular to the

plane of the loop antﬂo parallel to the positivey axis, the
integral equation(3.4) becomes

H aJ?ﬂ-d ’ i 1\ — pika sin ¢
i)+ 5— . ' K(p—")i(¢')=¢ :

(E20
sihnw cosw sinw 11 2\ iwe
K==+ WP =ijld§<1+§)e :
(E2))
r
w=w(7)=2ka sin-. (E22

2

Starting with Eq.(E2) and following the previous steps lead
to
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Jn(ka)
x (E23

fn= 14U, (ka)’

1 T . 1 ™ . 1
Up(ka)= Eﬁwdf /C(T)e*'”fzgﬁldg (1+ &%) fﬁﬂdT eW(Mécosnr= Efoldg (1+&2)J,,(2kaé)

1
= 2K ((2!’1 1)E350(€)S_1.m—1(8) — EJon-1(E) Sy m(é) + (2k§ )2[ 2n+1)J,,(8) +(2n+1)(2n—1)?

2ka
XJZn(f)Sl,Zn1(5)_§J2n1(5)_(4n2_1)\]2n1(5)50,21(5)]]
£=0
T 4n%-1
= 1 (2ka)? 7 [1J2n-1(2ka)[ Epn(2Ka) + Yon(2ka) ] — Jon(2ka)[ Eon - 1(2Ka) + Yo, 1(2ka) I}
1 n’— B
* 2xa 2ka J2n(2ka) Jon-1(2ka)+ (2ka)? +1|, n=-o, ..., o (E24)
whereS,, , is Lommel’s function E, is Weber’s functior{40], andU ,(ka)>0 for all ka. With theseU,(ka), it follows that
.« Jyka)dy(kasing) .
fia)= 2 TraUyka) & (E29
“ Jn(ka)?
N@= 2 T el ka P €29
o Un(ka)dn(ka)?
T@= 2 50 ka (827

where (, 6, ¢) is the usual spherical coordinate system. Again, compare with(Bgs.and (B26)—(B28) of Appendix B.
Likewise, Eq.(3.19 can be solved explicitly in the case whered@creterotational symmetry obtains, such as when
filaments or dipoles are distributed uniformly along a circle, via application of the discrete Fourier trangfothe engi-

neering literature, this technique is known as the “method of symmetrical components”; see, for instan¢é1Ref.
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